Diana Massai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640964/publications.pdf Version: 2024-02-01

ΠΙΛΝΛ ΜΛΩΩΛΙ

#	Article	lF	CITATIONS
1	Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. IScience, 2022, 25, 104297.	1.9	2
2	Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circulation Research, 2022, 131, 239-257.	2.0	26
3	ICF-1 loaded injectable microspheres for potential repair of the infarcted myocardium. Journal of Biomaterials Applications, 2021, 35, 762-775.	1.2	7
4	PDMS Substrates with tunable stiffness for cardiac mechanobiology investigation: A nanoindentation study. Biomedical Science and Engineering, 2021, 4, .	0.0	0
5	A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues. Medical Engineering and Physics, 2020, 85, 7-15.	0.8	4
6	Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Medical Engineering and Physics, 2020, 84, 1-9.	0.8	15
7	Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Frontiers in Bioengineering and Biotechnology, 2020, 8, 733.	2.0	20
8	Development of an animal-free methodology for mechanical performance assessment of engineered skin substitutes. Biomedical Science and Engineering, 2020, 3, .	0.0	0
9	Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 229.	2.0	31
10	Versatile electrical stimulator for providing cardiac-like electrical impulses in vitro. Biomedical Science and Engineering, 2020, 3, .	0.0	0
11	Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture. Journal of Biomechanics, 2019, 94, 99-106.	0.9	4
12	Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor. Journal of Healthcare Engineering, 2019, 2019, 1-9.	1.1	16
13	Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in human-derived Cardiospheres. Scientific Reports, 2019, 9, 6644.	1.6	44
14	Destabilizing the AXH Tetramer by Mutations: Mechanisms and Potential Antiaggregation Strategies. Biophysical Journal, 2018, 114, 323-330.	0.2	14
15	Influence of injectable microparticle size on cardiac progenitor cell response. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 241-251.	0.7	9
16	Native human dermis versus human acellular dermal matrix: A comparison of biaxial mechanical properties. Australasian Medical Journal, 2018, 11, .	0.1	2
17	Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. Journal of Cardiovascular Translational Research, 2017, 10, 150-166.	1.1	30
18	Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development. Scientific Reports, 2017, 7, 3950.	1.6	9

DIANA MASSAI

#	Article	IF	CITATIONS
19	Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry, 2017, 59, 244-254.	1.8	131
20	A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids. PLoS ONE, 2016, 11, e0154610.	1.1	45
21	Cover Image, Volume 84, Issue 5. Proteins: Structure, Function and Bioinformatics, 2016, 84, C1-C1.	1.5	0
22	Characterization of the <scp>AXH</scp> domain of Ataxinâ€1 using enhanced sampling and functional mode analysis. Proteins: Structure, Function and Bioinformatics, 2016, 84, 666-673.	1.5	21
23	Three dimensional multiâ€cellular muscleâ€like tissue engineering in perfusionâ€based bioreactors. Biotechnology and Bioengineering, 2016, 113, 226-236.	1.7	31
24	The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve. European Journal of Cardio-thoracic Surgery, 2016, 49, 1222-1227.	0.6	42
25	Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds. BioMed Research International, 2014, 2014, 1-8.	0.9	19
26	A Survey of Quantitative Descriptors of Arterial Flows. Lecture Notes in Computational Vision and Biomechanics, 2014, , 1-24.	0.5	3
27	Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease. Journal of Healthcare Engineering, 2013, 4, 329-370.	1.1	38
28	A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability. Annals of Biomedical Engineering, 2013, 41, 2027-2041.	1.3	74
29	A Novel Perfusion Bioreactor for 3D Cell Culture in Microgravity Conditions. , 2013, , .		0
30	Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. European Journal of Mechanics, B/Fluids, 2012, 35, 92-101.	1.2	31
31	On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow. Annals of Biomedical Engineering, 2012, 40, 729-741.	1.3	126
32	A Survey of Microchannel Geometries for Mixing of Species in Biomicrofluidics. , 2012, , 548-578.		2
33	On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. Journal of Biomechanics, 2011, 44, 2427-2438.	0.9	93
34	Insights Into the Molecular Mechanisms of Actin Dynamics: A Multiscale Modeling Approach. , 2011, , .		0
35	On the Importance of Assumptions for Bulk Flow in Hemodynamic Models of the Carotid Bifurcation. , 2011, , .		0
36	On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta. , 2011, , .		1

DIANA MASSAI

#	Article	IF	CITATIONS
37	Identification of Atheroprone Morphological Features in Wall Shear Stress Waveforms in Carotid Bifurcations: A CFD-Based Integrated Approach. , 2010, , .		0
38	Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case. Annals of Biomedical Engineering, 2010, 38, 3688-3705.	1.3	50
39	Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow. Journal of Biomechanical Engineering, 2010, 132, 091005.	0.6	80
40	A Numerical Multiscale Study of the Haemodynamics in an Image-Based Model of Human Carotid Artery Bifurcation. , 2009, , .		0
41	Effects of Blood Rheology on Flow Topology and Blood-Vessel Interaction in Image-Based Carotid Bifurcation Numerical Model. , 2009, , .		0
42	Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: A fluid–structure interaction approach. Journal of Biomechanics, 2009, 42, 1952-1960.	0.9	66
43	Prediction of Shear Induced Platelet Activation in Prosthetic Heart Valves by Integrating Fluid–Structure Interaction Approach and Lagrangian-Based Blood Damage Model. , 2009, , .		1
44	A treatment planning code for inverse planning and 3D optimization in hadrontherapy. Computers in Biology and Medicine, 2008, 38, 990-999.	3.9	8
45	HELICAL FLOW STRUCTURE IN VESSELS: THE EFFECT OF BLOOD RHEOLOGY. Journal of Biomechanics, 2008, 41, S336.	0.9	0
46	Scale/Physics/Time Properties and Functions in Bioartificial Systems. Materials Science Forum, 0, 706-709, 121-126.	0.3	0