Yanqing Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408495/publications.pdf Version: 2024-02-01

516215 433756 35 990 16 31 citations h-index g-index papers 35 35 35 1224 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coexistence of Negative Differential Resistance and Resistive Switching Memory at Room Temperature in TiO <i>_x</i> Modulated by Moisture. Advanced Electronic Materials, 2018, 4, 1700567.	2.6	147
2	Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Applied Physics Letters, 2016, 109, .	1.5	86
3	High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Applied Materials & Interfaces, 2019, 11, 22021-22027.	4.0	80
4	A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 16868-16873.	5.2	76
5	Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High-Performance Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 196-203.	7.3	64
6	Resistive switching behaviors and memory logic functions in single MnO _x nanorod modulated by moisture. Chemical Communications, 2019, 55, 9915-9918.	2.2	51
7	Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory. Nanotechnology, 2017, 28, 425202.	1.3	48
8	Evolution map of the memristor: from pure capacitive state to resistive switching state. Nanoscale, 2019, 11, 17222-17229.	2.8	45
9	Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid. Sustainable Energy and Fuels, 2020, 4, 3971-3978.	2.5	37
10	Mechanism for bipolar resistive switching memory behaviors of a self-assembled three-dimensional MoS2 microsphere composed active layer. Journal of Applied Physics, 2017, 121, .	1.1	34
11	Electron Transport Materials: Evolution and Case Study for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	3.1	32
12	Highly Efficient Sn–Pb Perovskite Solar Cell and Highâ€Performance Allâ€Perovskite Fourâ€Terminal Tandem Solar Cell. Solar Rrl, 2020, 4, 1900396.	3.1	30
13	An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy, 2020, 68, 104383.	8.2	26
14	Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE–PDMS Composite Film. ACS Applied Electronic Materials, 2021, 3, 4162-4171.	2.0	22
15	Band gap energies for white nanosheets/yellow nanoislands/purple nanorods of CeO ₂ . RSC Advances, 2016, 6, 59370-59374.	1.7	21
16	Self-woven monolayer polyionic mesh to achieve highly efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 428, 132074.	6.6	19
17	High performance planar p-i-n perovskite solar cells based on a thin Alq ₃ cathode buffer layer. RSC Advances, 2018, 8, 15961-15966.	1.7	16
18	Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61BM. Organic Electronics, 2018, 59, 260-265.	1.4	14

YANQING YAO

#	Article	IF	CITATIONS
19	Hydrazine dihydrochloride as a new additive to promote the performance of tin-based mixed organic cation perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 2660-2667.	2.5	14
20	Effect of guanidinium chloride in eliminating O ₂ ^{â^'} electron extraction barrier on a SnO ₂ surface to enhance the efficiency of perovskite solar cells. RSC Advances, 2020, 10, 19513-19520.	1.7	14
21	Pentacene as a hole transport material for high performance planar perovskite solar cells. Current Applied Physics, 2018, 18, 1095-1100.	1.1	13
22	Perovskite solar cells fabricated under ambient air at room temperature without any post-treatment. Organic Electronics, 2020, 86, 105918.	1.4	13
23	Elimination of Charge Transport Layers in High-Performance Perovskite Solar Cells by Band Bending. ACS Applied Energy Materials, 2021, 4, 1294-1301.	2.5	13
24	The interface degradation of planar organic–inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances, 2017, 7, 42973-42978.	1.7	12
25	Nitrogen-doped carbon nanotubes encapsulated Bi nanobuds for lithium based high-performance energy storage devices. Journal of Alloys and Compounds, 2021, 856, 158204.	2.8	12
26	Nuclei position-control and crystal growth-guidance on frozen substrates for high-performance perovskite solar cells. Nanoscale, 2019, 11, 12108-12115.	2.8	10
27	Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO ₂ and MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Simultaneously. ACS Applied Energy Materials, 2021, 4, 3794-3802.	2.5	10
28	Interface barrier strategy for perovskite solar cells realized by In-situ synthesized polyionic layer. Chemical Engineering Journal, 2022, 439, 135704.	6.6	7
29	Controllable Multistep Preparation Method for Highâ€Efficiency Perovskite Solar Cells with Low Annealing Temperature in Glove Box. Energy Technology, 2020, 8, 2000071.	1.8	6
30	Improving the electrical performance of inverted perovskite solar cell with LiF anode buffer layer. Organic Electronics, 2022, 101, 106401.	1.4	6
31	Mechanism for Enhancing Photocurrent of Hot Electron Collection Solar Cells by Adding LiF on the Outmost MAPbl ₃ Perovskite Layer. IEEE Journal of Photovoltaics, 2021, 11, 99-103.	1.5	5
32	Impact of A-Site Cations on Fluorescence Quenching in Organic–Inorganic Hybrid Perovskite Materials. Journal of Physical Chemistry C, 2021, 125, 11524-11531.	1.5	3
33	A simple method to experimentally determine the accurate RC-constant in nanosecond timescale transient photocurrent measurements on organic solar cells. RSC Advances, 2015, 5, 103403-103409.	1.7	2
34	P-type doping in internally photoemitted hot carrier solar cells. Journal of Cleaner Production, 2021, 278, 124168.	4.6	2
35	Correction to Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO2 and MAPbI3–xClx Simultaneously. ACS Applied Energy Materials, 2021, 4, 8660-8660.	2.5	0