Dmitri Schebarchov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capillary Absorption of Metal Nanodroplets by Single-Wall Carbon Nanotubes. Nano Letters, 2008, 8, 2253-2257.	4.5	67
2	Superheating and Solid-Liquid Phase Coexistence in Nanoparticles with Nonmelting Surfaces. Physical Review Letters, 2006, 96, 256101.	2.9	41
3	Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. Physical Chemistry Chemical Physics, 2013, 15, 4233.	1.3	41
4	Solid-liquid phase coexistence and structural transitions in palladium clusters. Physical Review B, 2006, 73, .	1.1	40
5	Core–Shell Bimetallic Nanoparticle Trimers for Efficient Light-to-Chemical Energy Conversion. ACS Energy Letters, 2020, 5, 3881-3890.	8.8	37
6	Dynamics of capillary absorption of droplets by carbon nanotubes. Physical Review E, 2008, 78, 046309.	0.8	36
7	Structure, thermodynamics, and rearrangement mechanisms in gold clusters—insights from the energy landscapes framework. Nanoscale, 2018, 10, 2004-2016.	2.8	36
8	Transition from Icosahedral to Decahedral Structure in a Coexisting Solid-Liquid Nickel Cluster. Physical Review Letters, 2005, 95, 116101.	2.9	35
9	Static, transient, and dynamic phase coexistence in metal nanoclusters. Journal of Chemical Physics, 2005, 123, 104701.	1.2	34
10	Communication: A new paradigm for structure prediction in multicomponent systems. Journal of Chemical Physics, 2013, 139, 221101.	1.2	32
11	Electronic effects on the melting of small gallium clusters. Journal of Chemical Physics, 2012, 137, 144307.	1.2	30
12	Uptake and withdrawal of droplets from carbon nanotubes. Nanoscale, 2011, 3, 134-141.	2.8	29
13	Throwing jellium at gallium—a systematic superatom analysis of metalloid gallium clusters. Physical Chemistry Chemical Physics, 2011, 13, 21109.	1.3	28
14	Structure Prediction for Multicomponent Materials Using Biminima. Physical Review Letters, 2014, 113, 156102.	2.9	26
15	Grand and Semigrand Canonical Basin-Hopping. Journal of Chemical Theory and Computation, 2016, 12, 902-909.	2.3	26
16	Quasi-combinatorial energy landscapes for nanoalloy structure optimisation. Physical Chemistry Chemical Physics, 2015, 17, 28331-28338.	1.3	25
17	Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium. Physical Chemistry Chemical Physics, 2012, 14, 9912.	1.3	20
18	Interplay of Wetting and Elasticity in the Nucleation of Carbon Nanotubes. Physical Review Letters, 2011, 107, 185503.	2.9	16

DMITRI SCHEBARCHOV

#	Article	IF	CITATIONS
19	Impurity effects on solidâ \in 'solid transitions in atomic clusters. Nanoscale, 2016, 8, 18326-18340.	2.8	14
20	Approximate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi> matrix and optical properties of spheroidal particles to third order with respect to size parameter. Physical Review A, 2019, 99, .</mml:math 	1.0	13
21	Filling a nanoporous substrate by dewetting of thin films. Nanoscale, 2013, 5, 1949.	2.8	12
22	Thermal instability of decahedral structures in platinum nanoparticles. European Physical Journal D, 2007, 43, 11-14.	0.6	11
23	Molecular dynamics study of the melting of a supported 887-atom Pd decahedron. Journal of Physics Condensed Matter, 2009, 21, 144204.	0.7	11
24	In Situ Visualization of Site-Dependent Reaction Kinetics in Shape-Controlled Nanoparticles: Corners vs Edges. Journal of Physical Chemistry C, 2019, 123, 14746-14753.	1.5	10
25	Effects of epitaxial strain on the melting of supported nickel nanoparticles. Physical Review B, 2011, 84,	1.1	9
26	Reverse Capillary Action in Carbon Nanotubes: Sucking Metal Nanoparticles Out of Nanotubes. Small, 2011, 7, 737-740.	5.2	9
27	Structure and Thermodynamics of Metal Clusters on Atomically Smooth Substrates. Journal of Physical Chemistry Letters, 2017, 8, 5402-5407.	2.1	8
28	Multiple scattering of light in nanoparticle assemblies: User guide for the terms program. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 284, 108131.	1.1	7
29	Superheating in metal nanoparticles with non-melting surfaces. European Physical Journal D, 2009, 53, 63-68.	0.6	6
30	Degenerate Ising model for atomistic simulation of crystal-melt interfaces. Journal of Chemical Physics, 2014, 140, 074704.	1.2	6
31	Molecular dynamics simulations of nanoparticles. International Journal of Nanotechnology, 2009, 6, 274.	0.1	1
32	Healing and sealing carbon nanotubes—growth and closure within a transmission electron microscope. Nanoscale, 2011, 3, 1493.	2.8	1
33	Comment on "Dynamic Catalyst Restructuring during Carbon Nanotube Growth― ACS Nano, 2011, 5, 685-685.	7.3	Ο