List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408168/publications.pdf Version: 2024-02-01

KEHAN WANC

#	Article	IF	CITATIONS
1	<i>In planta</i> haploid induction by genome editing of <i>DMP</i> in the model legume <i>Medicago truncatula</i> . Plant Biotechnology Journal, 2022, 20, 22-24.	4.1	42
2	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	2.3	10
3	The Rice Codebook: from Reading to Editing. Molecular Plant, 2022, , .	3.9	0
4	Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Frontiers in Plant Science, 2022, 13, .	1.7	11
5	Development of Multiple-Heading-Date mtl Haploid Inducer Lines in Rice. Agriculture (Switzerland), 2022, 12, 806.	1.4	3
6	Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Science China Life Sciences, 2022, 65, 2328-2331.	2.3	21
7	FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 2021, 64, 167-170.	2.3	8
8	Expanding the scope of genome editing with SpG and SpRY variants in rice. Science China Life Sciences, 2021, 64, 1784-1787.	2.3	15
9	Identification and characterization of An-4, a potential quantitative trait locus for awn development in rice. BMC Plant Biology, 2021, 21, 298.	1.6	1
10	CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 2021, 9, 678-687.	2.3	7
11	CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Crops and Products, 2021, 164, 113418.	2.5	22
12	Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell, 2021, 33, 2950-2964.	3.1	13
13	The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes, 2021, 12, 912.	1.0	45
14	Yuan Longping (1930–2021). Nature Plants, 2021, 7, 858-859.	4.7	1
15	The power and versatility of genome editing tools in crop improvement. Journal of Integrative Plant Biology, 2021, 63, 1591-1594.	4.1	5
16	Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. Frontiers in Plant Science, 2021, 12, 757152.	1.7	9
17	Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. Crop Journal, 2020, 8, 403-407.	2.3	12
18	Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. ABIOTECH, 2020, 1, 15-20.	1.8	21

#	Article	IF	CITATIONS
19	Recent advances in CRISPR research. Protein and Cell, 2020, 11, 786-791.	4.8	12
20	ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Science China Life Sciences, 2020, 63, 450-452.	2.3	12
21	Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 2019, 46, 61-64.	1.7	10
22	Development and Application of CRISPR/Cas System in Rice. Rice Science, 2019, 26, 69-76.	1.7	12
23	Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37, 283-286.	9.4	250
24	Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019, 62, 1-7.	2.3	244
25	Developing diseaseâ€resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 2019, 61, 1201-1205.	4.1	74
26	Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. Methods in Molecular Biology, 2019, 1917, 27-32.	0.4	5
27	<scp>xC</scp> as9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnology Journal, 2019, 17, 709-711.	4.1	79
28	Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, 2018, 61, 122-125.	2.3	48
29	QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 2018, 60, 89-93.	4.1	126
30	Increasing the efficiency of CRISPRâ€Cas9â€VQR precise genome editing in rice. Plant Biotechnology Journal, 2018, 16, 292-297.	4.1	78
31	S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Molecular Cell, 2018, 71, 142-154.e6.	4.5	135
32	A simple and efficient method for CRISPR/Cas9-induced mutant screening. Journal of Genetics and Genomics, 2017, 44, 207-213.	1.7	75
33	Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 2017, 60, 506-515.	2.3	103
34	Targeted mutagenesis in rice using CRISPR-Cpf1 system. Journal of Genetics and Genomics, 2017, 44, 71-73.	1.7	89
35	The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. Frontiers in Plant Science, 2017, 8, 1639.	1.7	49
36	Expanding the Range of CRISPR/Cas9 Genome Editing in Rice. Molecular Plant, 2016, 9, 943-945.	3.9	104

#	Article	IF	CITATIONS
37	Increasing the Genetic Recombination Frequency by Partial Loss of Function of the Synaptonemal Complex in Rice. Molecular Plant, 2015, 8, 1295-1298.	3.9	24
38	A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice. Journal of Genetics and Genomics, 2015, 42, 703-706.	1.7	112
39	OsHUS1 Facilitates Accurate Meiotic Recombination in Rice. PLoS Genetics, 2014, 10, e1004405.	1.5	15
40	BRK1, a Bub1-Related Kinase, Is Essential for Generating Proper Tension between Homologous Kinetochores at Metaphase I of Rice Meiosis. Plant Cell, 2013, 24, 4961-4973.	3.1	46
41	MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma, 2013, 122, 363-376.	1.0	28
42	The Role of OsMSH5 in Crossover Formation during Rice Meiosis. Molecular Plant, 2013, 6, 729-742.	3.9	46
43	The Role of Rice HEI10 in the Formation of Meiotic Crossovers. PLoS Genetics, 2012, 8, e1002809.	1.5	127
44	Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin. Plant Cell, 2012, 24, 577-588.	3.1	108
45	The Role of ZIP4 in Homologous Chromosome Synapsis and Crossover Formation in Rice Meiosis. Journal of Cell Science, 2012, 125, 2581-91.	1.2	116
46	Loose Plant Architecture1, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice Â. Plant Physiology, 2012, 161, 317-329.	2.3	150
47	The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant Journal, 2012, 72, 18-30.	2.8	53
48	<scp>MIL</scp> 2 (<scp>MICROSPORELESS</scp> 2) regulates early cell differentiation in the rice anther. New Phytologist, 2012, 196, 402-413.	3.5	51
49	A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta, 2012, 236, 141-151.	1.6	60
50	OsAM1 is required for leptotene-zygotene transition in rice. Cell Research, 2011, 21, 654-665.	5.7	47
51	Rice OsGL1-1 Is Involved in Leaf Cuticular Wax and Cuticle Membrane. Molecular Plant, 2011, 4, 985-995.	3.9	91
52	Mutations in the Fâ€box gene <i>LARGER PANICLE</i> improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9, 1002-1013.	4.1	160
53	OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant Journal, 2011, 67, 583-594.	2.8	46
54	OsREC8 Is Essential for Chromatid Cohesion and Metaphase I Monopolar Orientation in Rice Meiosis. Plant Physiology, 2011, 156, 1386-1396.	2.3	115

#	Article	IF	CITATIONS
55	PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Molecular Biology of the Cell, 2011, 22, 12-19.	0.9	87
56	OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma, 2010, 119, 625-636.	1.0	68
57	DEP and AFO Regulate Reproductive Habit in Rice. PLoS Genetics, 2010, 6, e1000818.	1.5	133
58	The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossovers during Meiosis in Rice Â. Plant Cell, 2010, 22, 417-430.	3.1	173
59	MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. Journal of Cell Science, 2009, 122, 2055-2063.	1.2	104