Seon-In Yeom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407850/publications.pdf Version: 2024-02-01

SEON-IN YEOM

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	13.7	2,860
2	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	9.4	867
3	New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology, 2017, 18, 210.	3.8	255
4	RNA-seq pinpoints a <i>Xanthomonas</i> TAL-effector activated resistance gene in a large-crop genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19480-19485.	3.3	103
5	Divergent evolution of multiple virusâ€resistance genes from a progenitor in <i>Capsicum</i> spp New Phytologist, 2017, 213, 886-899.	3.5	81
6	Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 2015, 14, 233-242.	1.3	80
7	Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Scientific Data, 2020, 7, 17.	2.4	76
8	Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants. Frontiers in Plant Science, 2016, 7, 1205.	1.7	75
9	Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Scientific Reports, 2016, 6, 33332.	1.6	67
10	Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.). DNA Research, 2015, 22, 19-27.	1.5	59
11	The Hot Pepper (Capsicum annuum) MicroRNA Transcriptome Reveals Novel and Conserved Targets: A Foundation for Understanding MicroRNA Functional Roles in Hot Pepper. PLoS ONE, 2013, 8, e64238.	1.1	55
12	A common plant cellâ€wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. Plant Journal, 2012, 69, 755-768.	2.8	53
13	Multiple recognition of <scp>RXLR</scp> effectors is associated with nonhost resistance of pepper against <i>Phytophthora infestans</i> . New Phytologist, 2014, 203, 926-938.	3.5	53
14	Bacillus velezensis YC7010 Enhances Plant Defenses Against Brown Planthopper Through Transcriptomic and Metabolic Changes in Rice. Frontiers in Plant Science, 2018, 9, 1904.	1.7	41
15	Use of a Secretion Trap Screen in Pepper Following <i>Phytophthora capsici</i> Infection Reveals Novel Functions of Secreted Plant Proteins in Modulating Cell Death. Molecular Plant-Microbe Interactions, 2011, 24, 671-684.	1.4	38
16	Genome analysis of <i>Hibiscus syriacus</i> provides insights of polyploidization and indeterminate flowering in woody plants. DNA Research, 2017, 24, dsw049.	1.5	38
17	Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. Plant Pathology Journal, 2018, 34, 435-444.	0.7	34
18	A novel pepper (<i>Capsicum annuum</i>) receptorâ€like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions. New Phytologist, 2010, 185, 701-715.	3.5	32

SEON-IN YEOM

#	Article	IF	CITATIONS
19	Global gene expression profiling for fruit organs and pathogen infections in the pepper, Capsicum annuum L Scientific Data, 2018, 5, 180103.	2.4	29
20	Positive-Selection and Ligation-Independent Cloning Vectors for Large Scale in Planta Expression for Plant Functional Genomics. Molecules and Cells, 2010, 30, 557-562.	1.0	24
21	Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in <i>Capsicum</i> spp DNA Research, 2018, 25, 561-575.	1.5	24
22	QTL analysis of fruit length using rRAMP, WRKY, and AFLP markers in chili pepper. Horticulture Environment and Biotechnology, 2011, 52, 602-613.	0.7	14
23	Development of Clustered Resistance Gene Analogs-Based Markers of Resistance toPhytophthora capsiciin Chili Pepper. BioMed Research International, 2019, 2019, 1-12.	0.9	14
24	Comprehensive transcriptome resource for response to phytohormone-induced signaling in Capsicum annuum L. BMC Research Notes, 2020, 13, 440.	0.6	13
25	Rice CaM-binding transcription factor (OsCBT) mediates defense signaling via transcriptional reprogramming. Plant Biotechnology Reports, 2020, 14, 309-321.	0.9	13
26	Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding. International Journal of Molecular Sciences, 2021, 22, 2279.	1.8	10
27	Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). Horticulture Research, 2022, , .	2.9	10
28	lsolation of putative pepper defense-related genes against the pathogen Phytophthora capsici using suppression subtractive hybridization/macroarray and RNA-sequencing analyses. Horticulture Environment and Biotechnology, 2019, 60, 685-699.	0.7	8
29	Marker production by PCR amplification with primer pairs from conserved sequences of WRKY genes in chili pepper. Molecules and Cells, 2008, 25, 196-204.	1.0	8
30	Ectopic Expression of Capsicum-Specific Cell Wall Protein Capsicum annuum Senescence-Delaying 1 (CaSD1) Delays Senescence and Induces Trichome Formation in Nicotiana benthamiana. Molecules and Cells, 2012, 33, 415-422.	1.0	5
31	Tissue-Specific RNA-Seq Analysis and Identification of Receptor-Like Proteins Related to Plant Growth in Capsicum annuum. Plants, 2021, 10, 972.	1.6	5
32	Identification of CaLOP Regulating Development and Growth Through Virus-Induced Gene Silencing in Pepper. Horticultural Science and Technology, 2018, 36, 292-302.	0.9	3
33	Isolation of an Rx homolog from C. annuum and the evolution of Rx genes in the Solanaceae family. Plant Biotechnology Reports, 2011, 5, 331-344.	0.9	1
34	Optimization of TILLING system based on capillary electrophoresis for targeted selection of pepper gene mutants. Horticulture Environment and Biotechnology, 2018, 59, 447-460.	0.7	0