Adrian Rodriguez-Marek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 2004, 24, 815-828.	1.9	570
2	Effects of near-fault ground motions and equivalent pulses on multi-story structures. Engineering Structures, 2011, 33, 767-779.	2.6	171
3	An Empirical Geotechnical Seismic Site Response Procedure. Earthquake Spectra, 2001, 17, 65-87.	1.6	158
4	Analysis of Single-Station Standard Deviation Using the KiK-net Data. Bulletin of the Seismological Society of America, 2011, 101, 1242-1258.	1.1	140
5	Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site. Bulletin of the Seismological Society of America, 2014, 104, 1601-1619.	1.1	133
6	A Model for Single-Station Standard Deviation Using Data from Various Tectonic Regions. Bulletin of the Seismological Society of America, 2013, 103, 3149-3163.	1.1	120
7	Groundâ€Motion Prediction Equation for the Chilean Subduction Zone. Bulletin of the Seismological Society of America, 2017, 107, 901-911.	1.1	80
8	A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa. Earthquake Spectra, 2015, 31, 661-698.	1.6	77
9	An integrated shear-wave velocity model for the Groningen gas field, The Netherlands. Bulletin of Earthquake Engineering, 2017, 15, 3555-3580.	2.3	67
10	Framework for a Ground-Motion Model for Induced Seismic Hazard and Risk Analysis in the Groningen Gas Field, The Netherlands. Earthquake Spectra, 2017, 33, 481-498.	1.6	66
11	Scenario Dependence of Linear Siteâ€Effect Factors for Shortâ€Period Response Spectral Ordinates. Bulletin of the Seismological Society of America, 2017, 107, 2859-2872.	1.1	64
12	A Method for Including Path Effects in Ground-Motion Prediction Equations: An Example Using the Mw 9.0 Tohoku Earthquake Aftershocks. Bulletin of the Seismological Society of America, 2013, 103, 1360-1372.	1.1	58
13	Strength reduction factors for near-fault forward-directivity ground motions. Engineering Structures, 2010, 32, 273-285.	2.6	51
14	Addressing limitations in existing â€~simplified' liquefaction triggering evaluation procedures: application to induced seismicity in the Groningen gas field. Bulletin of Earthquake Engineering, 2019, 17, 4539-4557.	2.3	50
15	Defining a Standard Rock Site: Propositions Based on the KiK-net Database. Bulletin of the Seismological Society of America, 2010, 100, 172-195.	1.1	49
16	Site effect assessment using KiK-net data: Part 1. A simple correction procedure for surface/downhole spectral ratios. Bulletin of Earthquake Engineering, 2012, 10, 421-448.	2.3	49
17	Estimation of Siteâ€Specific Kappa (κO) onsistent Damping Values at KiKâ€Net Sites to Assess the Discrepancy between Laboratoryâ€Based Damping Models and Observed Attenuation (of Seismic Waves) in the Field. Bulletin of the Seismological Society of America, 2017, 107, 2258-2271.	1.1	49
18	Landslides caused by the M 7.6 TecomÃin, Mexico earthquake of January 21, 2003. Engineering Geology, 2006. 86. 183-197.	2.9	47

#	Article	IF	CITATIONS
19	A Regional Siteâ€Response Model for the Groningen Gas Field. Bulletin of the Seismological Society of America, 2017, 107, 2067-2077.	1.1	47
20	Sliding Displacement of Flexible Earth Slopes Subject to Near-Fault Ground Motions. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .	1.5	46
21	Design ground motions near active faults. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42, 1-8.	0.2	42
22	Influence of Epistemic Uncertainty in Shear Wave Velocity on Seismic Ground Response Analyses. Earthquake Spectra, 2019, 35, 929-954.	1.6	30
23	A new geostatistical model for shear wave velocity profiles. Soil Dynamics and Earthquake Engineering, 2020, 136, 106247.	1.9	30
24	Seismic Site Response for Near-Fault Forward Directivity Ground Motions. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 1611-1620.	1.5	27
25	Design spectra including effect of rupture directivity in near-fault region. Earthquake Engineering and Engineering Vibration, 2006, 5, 159-170.	1.1	26
26	Capturing epistemic uncertainty in site response. Earthquake Spectra, 2021, 37, 921-936.	1.6	26
27	An updated database for ground motion parameters for KiK-net records. Earthquake Spectra, 2021, 37, 505-522.	1.6	26
28	Empirical predictive relationships for rigid sliding displacement based on directionally-dependent ground motion parameters. Engineering Geology, 2017, 222, 124-139.	2.9	25
29	Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand. Earthquake Spectra, 2020, 36, 673-699.	1.6	25
30	An Empirical Model to Predict Topographic Effects in Strong Ground Motion Using California Small- to Medium-Magnitude Earthquake Database. Earthquake Spectra, 2016, 32, 1033-1054.	1.6	24
31	Characterisation of ground motion recording stations in the Groningen gas field. Journal of Seismology, 2018, 22, 605-623.	0.6	24
32	Ground motion prediction equations for significant duration using the KiK-net database. Earthquake Spectra, 2021, 37, 903-920.	1.6	23
33	Performance and Analyses of Mechanically Stabilized Earth Walls in the Tecomán, Mexico Earthquake. Journal of Performance of Constructed Facilities, 2006, 20, 287-299.	1.0	22
34	Number of Equivalent Stress Cycles for Liquefaction Evaluations in Active Tectonic and Stable Continental Regimes. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	1.5	22
35	Mapping the uncertainty in modulus reduction and damping curves onto the uncertainty of site amplification functions. Soil Dynamics and Earthquake Engineering, 2019, 126, 105091.	1.9	21

Ground Failure. Earthquake Spectra, 2003, 19, 35-56.

#	Article	IF	CITATIONS
37	Displacement-Based Probabilistic Seismic Demand Analyses of Earth Slopes in the Near-Fault Region. Earthquake Spectra, 2016, 32, 1141-1163.	1.6	18
38	Liquefaction Hazard in the Groningen Region of the Netherlands due to Induced Seismicity. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, 04020068.	1.5	18
39	Empirical Terrain-Based Topographic Modification Factors for Use in Ground Motion Prediction. Earthquake Spectra, 2017, 33, 157-177.	1.6	17
40	Developing a model for the prediction of ground motions due to earthquakes in the Groningen gas field. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, s203-s213.	0.6	15
41	Seismic assessment of the rigid sliding displacements caused by pulse motions. Soil Dynamics and Earthquake Engineering, 2016, 82, 1-10.	1.9	14
42	New Stress Reduction Coefficient Relationship for Liquefaction Triggering Analyses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	13
43	A site onsistent method to quantify sufficiency of alternative IMs in relation to PSDA. Earthquake Engineering and Structural Dynamics, 2018, 47, 377-396.	2.5	12
44	A generalized seismic sliding model of slopes with multiple slip surfaces. Earthquake Engineering and Structural Dynamics, 2021, 50, 2595-2612.	2.5	12
45	A hypoplastic model for site response analysis. Soil Dynamics and Earthquake Engineering, 2009, 29, 173-184.	1.9	11
46	<i>>V</i> _{<i>S</i>} - <i>κ</i> _O Correction Factors for Input Ground Motions Used in Seismic Site Response Analyses. Earthquake Spectra, 2017, 33, 917-941.	1.6	11
47	Computation of Vector Hazard Using Salient Features of Seismic Hazard Deaggregation. Earthquake Spectra, 2018, 34, 1893-1912.	1.6	11
48	Approach for Estimating Seismic Compression Using Site Response Analyses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	10
49	Selecting the Optimal Factor of Safety or Probability of Liquefaction Triggering for Engineering Projects Based on Misprediction Costs. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	10
50	Ground Motion and Site Response. Earthquake Spectra, 2003, 19, 11-34.	1.6	9
51	Probabilistic methodology for the analysis of paleoliquefaction features. Engineering Geology, 2008, 96, 159-172.	2.9	9
52	Engineering Analysis of Ground Motion Records from the 2001 M _w 8.4 Southern Peru Earthquake. Earthquake Spectra, 2010, 26, 499-524.	1.6	9
53	Ground motion prediction equations for Arias Intensity using the Kik-net database. Earthquake Spectra, 2021, 37, 428-448.	1.6	9
54	Limitations of Surface Liquefaction Manifestation Severity Index Models Used in Conjunction with Simplified Stress-Based Triggering Models. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	8

#	Article	IF	CITATIONS
55	Geotechnical Aspects of the January 2003 Tecomán, Mexico, Earthquake. Earthquake Spectra, 2005, 21, 493-538.	1.6	7
56	Accounting for Epistemic Uncertainty in Site Effects in Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 0, , .	1.1	7
57	An implicit integration algorithm for the finite element implementation of a nonlinear anisotropic material model including hysteretic nonlinearity. Computer Methods in Applied Mechanics and Engineering, 2000, 190, 1827-1844.	3.4	6
58	A Consistent Correlation between V _s , SPT, and CPT Metrics for Use in Liquefaction Evaluation Procedures. , 2020, , .		6
59	Topographic proxies from 2-D numerical analyses. Bulletin of Earthquake Engineering, 2016, 14, 2959-2975.	2.3	5
60	Assessing the need for an update of a probabilistic seismic hazard analysis using a SSHAC Level 1 study and the Seismic Hazard Periodic Reevaluation Methodology. Nuclear Engineering and Design, 2017, 323, 103-119.	0.8	4
61	Effect of Non-Liquefiable High Fines-Content, High Plasticity Soils on Liquefaction Potential Index (LPI) Performance. , 2018, , .		4
62	A multi-objective systems reliability approach for infrastructure design under aleatory and epistemic uncertainty. Structural Safety, 2021, 89, 102063.	2.8	4
63	Salient Features of Seismic Hazard Deaggregation and Computation of Vector Hazard. , 2018, , .		3
64	A Critique of b-Values Used for Computing Magnitude Scaling Factors. , 2018, , .		3
65	Intensity measure adequacy assessment for nonlinear site response using Information Theory. Soil Dynamics and Earthquake Engineering, 2020, 134, 106144.	1.9	3
66	Incorporating dwelling mounds into induced seismic risk analysis for the Groningen gas field in the Netherlands. Bulletin of Earthquake Engineering, 2022, 20, 255-285.	2.3	3
67	An Empirical Geotechnical Seismic Site Response Procedure. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 353-380.	0.1	3
68	Improved implementation of travel time randomization for incorporating Vs uncertainty in seismic ground response. Soil Dynamics and Earthquake Engineering, 2022, 157, 107277.	1.9	3
69	Regional Geology and Seismic Site Amplification in the Washington, DC, Metropolitan Area. , 2015, , .		2
70	Erratum to Groundâ€Motion Prediction Equation for the Chilean Subduction Zone. Bulletin of the Seismological Society of America, 2017, 107, 2541-2541.	1.1	2
71	Toward Improving Damping Characterization for Site Response Analysis. , 2018, , .		2

Propagation of Uncertainty in Equivalent Linear Site Response Analyses. , 2018, , .

2

#	Article	IF	CITATIONS
73	Random Fields for Site Response Analysis. , 2010, , .		1
74	Probabilistic Methodology for Developing Regional and Site-Class Dependent Seismic Site Amplification Factors. , 2015, , .		1
75	Influence of the Uncertainty in Bedrock Characteristics on Seismic Hazard: A Case Study in Italy. , 2018, , .		1
76	Probabilistic Seismic Demand Analysis of a Bridge with Unbonded, Post-Tensioned, Concrete-Filled, Fiber-Reinforced Polymer Tube Columns. Fibers, 2019, 7, 23.	1.8	1
77	Mines—Geotechnical Aspects. Earthquake Spectra, 2003, 19, 57-72.	1.6	0
78	Preliminary Results from a Study of the Dynamic Geotechnical Properties of Coal Combustion Products (CCP). , 2014, , .		0
79	What Can We Learn from Kappa (β) to Achieve a Better Characterization of Damping in Geotechnical Site Response Models?. , 2017, , .		0
80	Weathered Zone Effects: Central and Eastern North American Site Response. , 2017, , .		0
81	Investigation of Systematic Ground Motion Effects through Ground Motion Simulation of Small-to-Moderate Magnitude Earthquakes. , 2018, , .		0
82	WITHDRAWAL – Administrative Duplicate Publication: V _s - _O Correction Factors for Input Ground Motions used in Seismic Site Response Analyses. Earthquake Spectra, 0, ,	1.6	0
83	Comparison Study of Methods to Assess a Rigid Slope Seismic Stability. , 2022, , .		0