
MarÃ-a P Elizalde-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uptake of arsenite and arsenate by clinoptilolite-rich tuffs. Microporous and Mesoporous Materials, 2001, 46, 277-286.	4.4	91
2	Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. Journal of Analytical and Applied Pyrolysis, 2007, 78, 185-193.	5.5	85
3	Characterization of mango pit as raw material in the preparation of activated carbon for wastewater treatment. Biochemical Engineering Journal, 2007, 36, 230-238.	3.6	83
4	Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 2012, 59, 140-149.	5.2	82
5	Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta, 2010, 82, 38-43.	5.5	69
6	Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions. Bioresource Technology, 2009, 100, 6199-6206.	9.6	65
7	Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 2010, 163, 55-61.	12.7	60
8	Removal of acid orange 7 by guava seed carbon: A four parameter optimization study. Journal of Hazardous Materials, 2009, 168, 515-522.	12.4	57
9	Application of natural zeolites for preconcentration of arsenic species in water samples. Journal of Environmental Monitoring, 2001, 3, 22-26.	2.1	48
10	Chemically modified maize cobs waste with enhanced adsorption properties upon methyl orange and arsenic. Bioresource Technology, 2008, 99, 5134-5139.	9.6	42
11	In situ and ex situ study of the enhanced modification with iron of clinoptilolite-rich zeolitic tuff for arsenic sorption from aqueous solutions. Journal of Colloid and Interface Science, 2008, 322, 527-536.	9.4	40
12	Guava seed as an adsorbent and as a precursor of carbon for the adsorption of acid dyes. Bioresource Technology, 2009, 100, 2111-2117.	9.6	37
13	Removal of textile dyes from aqueous solutions by adsorption on biodegradable wastes. Environmental Technology (United Kingdom), 2003, 24, 821-829.	2.2	33
14	Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 239-249.	2.8	30
15	Stability and determination of aflatoxins by high-performance liquid chromatography with amperometric detection. Journal of Chromatography A, 1998, 828, 439-444.	3.7	25
16	Gas chromatographic characterization of the adsorption properties of the natural adsorbent CACMM2. Journal of Chromatography A, 1999, 845, 373-379.	3.7	25
17	Electrochemical treatment of textile dyes and their analysis by high-performance liquid chromatography with diode array detection. Journal of Chromatography A, 2000, 889, 253-259.	3.7	25
18	Study of the thermal degradation of citrus seeds. Biomass and Bioenergy, 2009, 33, 1295-1299.	5.7	25

#	Article	IF	CITATIONS
19	Degradation of immobilized azo dyes by Klebsiella sp. UAP-b5 isolated from maize bioadsorbent. Journal of Hazardous Materials, 2009, 161, 769-774.	12.4	24
20	Characterization of an adsorbent prepared from maize waste and adsorption of three classes of textile dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278, 89-97.	4.7	21
21	Unpredicted photocatalytic activity of clinoptilolite–mordenite natural zeolite. RSC Advances, 2020, 10, 39251-39260.	3.6	20
22	Retention index system, adsorption characteristics, and structure correlations of polycyclic aromatic hydrocarbons in fuels. Journal of High Resolution Chromatography, 1996, 19, 345-352.	1.4	19
23	Contamination by PAHs, PCBs, PCPs and heavy metals in the mecoácfin lake estuarine water and sediments after oil spilling. Journal of Soils and Sediments, 2003, 3, 35-40.	3.0	19
24	Removal of gadolinium-based contrast agents: adsorption on activated carbon. Environmental Science and Pollution Research, 2017, 24, 8164-8175.	5.3	19
25	Identification of roxarsonemetabolites produced in the system: Soil–chlorinated water–light by using HPLC-ICP-MS/ESI-MS, HPLC-ESI-MS/MS and High Resolution Mass Spectrometry (ESI-TOF-MS). Journal of Analytical Atomic Spectrometry, 2011, 26, 171-177.	3.0	18
26	Removal of metal ions from aqueous solution by adsorption on the natural adsorbent CACMM2. Journal of Chromatography A, 2001, 938, 237-242.	3.7	17
27	Novel preparation of carbon-TiO2 composites. Journal of Hazardous Materials, 2013, 263, 73-83.	12.4	17
28	Identification of degradation products of phenylarsonic acid and o-arsanilic acid in contact with suspensions of soils of volcanic origin. Talanta, 2012, 99, 310-315.	5.5	16
29	Photodegradation of the anthraquinonic dye Acid Green 25 by TiO2 immobilized on carbonized avocado kernels: Intermediates and toxicity. Applied Catalysis B: Environmental, 2015, 166-167, 241-250.	20.2	15
30	Using Akaike Information Criterion to Select the Optimal Isotherm Equation for Adsorption from Solution. Adsorption Science and Technology, 2014, 32, 605-622.	3.2	14
31	Preparation, characterization, and application of TiO2/Carbon composite: Adsorption, desorption and photocatalysis of Gd-DOTA. Chemical Engineering Research and Design, 2018, 120, 195-205.	5.6	12
32	Effect of Cooking Processes on the Contents of Two Bioactive Carotenoids in Solanum lycopersicum Tomatoes and Physalis ixocarpa and Physalis philadelphica Tomatillos. Molecules, 2007, 12, 1829-1835.	3.8	11
33	Retention of phenylarsenicals in soils derived from volcanic materials. Journal of Hazardous Materials, 2011, 186, 1328-1334.	12.4	11
34	Assessment of the effectiveness of combined adsorption and photocatalysis for removal of the herbicide isoproturon. Physics and Chemistry of the Earth, 2016, 91, 77-86.	2.9	11
35	Investigation of the degradation of arsenobetaine during its contact with natural zeolites and the identification of metabolites using HPLC coupled with ICP-MS and ESI-MS. Analytical and Bioanalytical Chemistry, 2008, 390, 1707-1715.	3.7	10
36	Arsenic Speciation Analysis in Solutions Treated with Zeolites. Mikrochimica Acta, 2005, 151, 257-262.	5.0	9

#	Article	IF	CITATIONS
37	Bulk and surface analysis of Ti _{1–<i>x</i>} Fe <i>_x</i> O ₂ /Fe ₂ O ₃ composites prepared by solid state reaction for photocatalytic applications. Surface and Interface Analysis. 2012, 44, 484-490.	1.8	9
38	Influence of Ni doping on the structural, optical and textural properties of TiO2 nanocrystals prepared via an ultrasound assisted sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 69, 571-579.	2.4	9
39	TiO2 Immobilized on Manihot Carbon: Optimal Preparation and Evaluation of Its Activity in the Decomposition of Indigo Carmine. International Journal of Molecular Sciences, 2015, 16, 1590-1612.	4.1	9
40	Volatile compounds in different parts of the fruit <scp><i>Psidium guajava</i></scp> L. cv. "Media Chinaâ€identified at distinct phenological stages using HSâ€6PMEâ€GCâ€QTOF/MS. Phytochemical Analysis, 2018, 29, 649-660.	2.4	9
41	Behaviour of organoarsenic compounds in contact with natural zeolites. Applied Organometallic Chemistry, 2002, 16, 9-16.	3.5	8
42	Validating the use of Carbopack C for chromatoscopic studies: morphological, crystallographic, spectroscopic and adsorption characterization. Materials Chemistry and Physics, 2004, 85, 347-352.	4.0	8
43	Composite functioning as trap of photoproducts: TiO2 nanobelts anchored to carbon particles. Materials Chemistry and Physics, 2019, 228, 15-26.	4.0	8
44	Interaction between organic vapors and clinoptilolite–mordenite rich tuffs in parent, decationized, and lead exchanged forms. Journal of Colloid and Interface Science, 2007, 312, 317-325.	9.4	7
45	Preparation and in situ spectroscopic characterization of Cu-clinoptilolite catalysts for the oxidative carbonylation of methanol. Microporous and Mesoporous Materials, 2012, 164, 93-98.	4.4	7
46	Water and dye adsorption properties of cactaceous material. Journal of Materials Science Letters, 1997, 16, 1145-1147.	0.5	6
47	Characterization of Manihot residues and preparation of activated carbon. Biomass and Bioenergy, 2010, 34, 389-395.	5.7	6
48	Electrosynthesis of β-Ni(OH) ₂ and Electrochemical Response of β-Ni(OH) ₂ /CB-PVC Composite Electrode. ECS Transactions, 2011, 36, 299-310.	0.5	5
49	Formation of Sulfonyl Aromatic Alcohols by Electrolysis of a Bisazo Reactive Dye. Molecules, 2012, 17, 14377-14392.	3.8	5
50	Photoproducts of carminic acid formed by a composite from Manihot dulcis waste. Food Chemistry, 2015, 173, 725-732.	8.2	5
51	Conotrachelus dimidiatus Champion, 1904 (Coleoptera: Curculionidae:ÂMolytinae): morphological re-description of the immature stages, keys, tribal comparisons and biology. Zootaxa, 2018, 4433, 127-140.	0.5	4
52	Behavioral and Electroantennographic Responses of Adults of Guava Weevil, Conotrachelus dimidiatus (Coleoptera: Curculionidae), to Synthetic Host-Associated and Conspecific Volatiles. Environmental Entomology, 2020, 49, 810-814.	1.4	4
53	Transformation of Arsenobetaine and Growth of Bacteria on Zeolitic Tuffs. Engineering in Life Sciences, 2008, 8, 575-581.	3.6	3
54	Use of Wide-Pore Carbons to Examine Intermolecular Interactions during the Adsorption of Anthraquinone Dyes from Aqueous Solution. Adsorption Science and Technology, 2009, 27, 447-459.	3.2	3

#	Article	IF	CITATIONS
55	Profile of Terpenoid Compounds Mediating a Plantâ€Herbivore Interaction: Screening by Static Headspace Solidâ€Phase Microextractionâ€Gas Chromatography/Qâ€ToF Mass Spectrometry. Chemistry and Biodiversity, 2020, 17, e2000564.	2.1	3
56	HPLC study of the adsorption from solutions on two silicagels. Chromatographia, 1997, 46, 183-190.	1.3	2
57	Application of inverse gas chromatography in the study of the adsorption properties of natural, dealuminated and lead exchanged zeolitic tuffs. Chromatographia, 2003, 57, S225-S228.	1.3	2
58	Carbofuran degraded by iron-doped anatase: Weakening the cholinesterase inhibitory activity in the photoproducts mixture. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 538-546.	1.5	2
59	Blue Titania: The Outcome of Defects, Crystalline-Disordered Core-Shell Structure, and Hydrophilicity Change. Nanomaterials, 2022, 12, 1501.	4.1	2
60	Retention system, thermodynamic properties and structure correlations of environmental analytes. Chromatographia, 1999, 49, 385-390.	1.3	0