Serhat Karyeyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407134/publications.pdf

Version: 2024-02-01

567281 713466 22 449 15 21 citations h-index g-index papers 22 22 22 275 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Modelling of the gas-turbine colorless distributed combustion: An application to hydrogen enriched $\hat{a} \in \text{``kerosene fuel. International Journal of Hydrogen Energy, 2022, 47, 12354-12364.}$	7.1	17
2	H2 – CH4 blending fuels combustion using a cyclonic burner on colorless distributed combustion. International Journal of Hydrogen Energy, 2022, 47, 12393-12409.	7.1	8
3	Numerical investigation of combustion and flame characteristics for a model solid oxide fuel cell performance improvement. Fuel, 2022, 322, 124188.	6.4	7
4	Investigation of colorless distributed combustion regime using a high internal recirculative combustor. International Journal of Hydrogen Energy, 2021, , .	7.1	2
5	Numerical study of a swirl gas turbine combustor for turbulent air and oxy-combustion of ammonia/kerosene fuels. Fuel, 2021, 304, 121359.	6.4	25
6	Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation. International Journal of Hydrogen Energy, 2020, 45, 3641-3650.	7.1	18
7	Flowfield impact on distributed combustion in a swirl assisted burner. Fuel, 2020, 263, 116643.	6.4	20
8	Development of distributed combustion index from a swirl-assisted burner. Applied Energy, 2020, 268, 114967.	10.1	19
9	A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: An experimental and numerical study. Fuel, 2019, 256, 115990.	6.4	25
10	Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels. Applied Energy, 2019, 251, 113354.	10.1	25
11	Hydrogen concentration effects on swirl-stabilized oxy-colorless distributed combustion. Fuel, 2019, 253, 772-780.	6.4	40
12	Effect of oxy-fuel combustion on flame characteristics of low calorific value coal gases in a small burner and combustor. Fuel, 2018, 226, 350-364.	6.4	19
13	Experimental and numerical analysis of turbulent premixed combustion of low calorific value coal gases in a generated premixed burner. Fuel, 2018, 220, 586-598.	6.4	22
14	3D numerical modelling of turbulent biogas combustion in a newly generated 10ÂKW burner. Journal of the Energy Institute, 2018, 91, 87-99.	5.3	21
15	Combustion characteristics of a non-premixed methane flame in a generated burner under distributed combustion conditions: A numerical study. Fuel, 2018, 230, 163-171.	6.4	28
16	An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner. Fuel, 2017, 194, 274-290.	6.4	14
17	Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles. Energy, 2017, 138, 383-393.	8.8	21
18	Turbulent diffusion flames of coal derived-hydrogen supplied low calorific value syngas mixtures in a new type of burner: An experimentalÂstudy. International Journal of Hydrogen Energy, 2017, 42, 2411-2423.	7.1	23

#	Article	lF	CITATION
19	Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International Journal of Hydrogen Energy, 2016, 41, 7185-7191.	7.1	45
20	A numerical study on combustion behaviours of hydrogen-enriched low calorific value coal gases. International Journal of Hydrogen Energy, 2015, 40, 15218-15226.	7.1	29
21	Investigation of premixed hydrogen flames in confined/unconfined combustors: A numerical study. International Journal of Hydrogen Energy, 2015, 40, 11189-11194.	7.1	3
22	Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor. International Journal of Energy Research, 2014, 38, 1171-1180.	4.5	18