Jalel Labidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406837/publications.pdf

Version: 2024-02-01

19608 27345 14,661 286 61 106 citations h-index g-index papers 301 301 301 14029 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of the autohydrolysis treatment on the integral revalorisation of Ziziphus lotus. Biomass Conversion and Biorefinery, 2024, 14, 1413-1425.	2.9	6
2	Insecticidal effects of two Tunisian diatomaceous earth loaded with <i>Thymus capitatus</i> (L.) Hoffmans and Links as an ecofriendly approach for stored coleopteran pest control. International Journal of Environmental Health Research, 2023, 33, 398-412.	1.3	2
3	Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocolloids, 2022, 123, 107119.	5.6	61
4	Fine-tune of lignin properties by its fractionation with a sequential organic solvent extraction. Industrial Crops and Products, 2022, 175, 114251.	2.5	16
5	Impact of the lignin type and source on the characteristics of physical lignin hydrogels. Sustainable Materials and Technologies, 2022, 31, e00369.	1.7	14
6	Lignin depolymerization for monomers production by sustainable processes. , 2022, , 65-110.		0
7	Composition and Techno-functional Properties of Grape Seed Flour Protein Extracts. ACS Food Science & Technology, 2022, 2, 125-135.	1.3	8
8	Integral valorisation of walnut shells based on a three-step sequential delignification. Journal of Environmental Management, 2022, 310, 114730.	3.8	8
9	Valorization of waste bark for biorefineries: chemical characterization of <i>Eucalyptus camaldulensis</i> i>inner and outer barks. Holzforschung, 2022, 76, 285-293.	0.9	O
10	Macroporous Surgical Mesh from a Natural Cocoon Composite. ACS Sustainable Chemistry and Engineering, 2022, 10, 5728-5738.	3.2	0
11	Preparation of chitosan/tannin and montmorillonite films as adsorbents for Methyl Orange dye removal. International Journal of Biological Macromolecules, 2022, 210, 94-106.	3.6	27
12	Non-destructive determination of core-transition-outer wood of Pinus nigra combining FTIR spectroscopy and prediction models. Microchemical Journal, 2022, 179, 107532.	2.3	7
13	Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review. Chemosphere, 2022, 302, 134823.	4.2	9
14	Physicochemical Characterization of Phase Change Materials for Industrial Waste Heat Recovery Applications. Energies, 2022, 15, 3640.	1.6	5
15	"CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITY OF PISTACIA VERA L. LEAVES: BENEFICIAL EFFECTS OF FEMALE LEAVES EXTRACT ON FOOD PRODUCTS". Cellulose Chemistry and Technology, 2022, 56, 309-319.	0.5	5
16	Influence of the heating mechanism during the aqueous processing of vine shoots for the obtaining of hemicellulosic oligosaccharides. Waste Management, 2021, 120, 146-155.	3.7	20
17	Hydrothermal treatments of walnut shells: A potential pretreatment for subsequent product obtaining. Science of the Total Environment, 2021, 764, 142800.	3.9	21
18	Techno-economic analysis of different integrated biorefinery scenarios using lignocellulosic waste streams as source for phenolic alcohols production. Journal of Cleaner Production, 2021, 285, 124829.	4.6	7

#	Article	IF	CITATIONS
19	A status review of terpenes and their separation methods. Reviews in Chemical Engineering, 2021, 37, 433-447.	2.3	22
20	Lignin extraction and isolation methods. , 2021, , 61-104.		1
21	Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Advances, 2021, 11, 23644-23653.	1.7	25
22	Production and Properties of Lignin Nanoparticles from Ethanol Organosolv Liquorsâ€"Influence of Origin and Pretreatment Conditions. Polymers, 2021, 13, 384.	2.0	15
23	Electrochemical Activity of Lignin Based Composite Membranes. Polymers, 2021, 13, 643.	2.0	9
24	Renewable Biopolyols from Residual Aqueous Phase Resulting after Lignin Precipitation. ACS Sustainable Chemistry and Engineering, 2021, 9, 3608-3615.	3.2	4
25	Lignin-Based Polyols with Controlled Microstructure by Cationic Ring Opening Polymerization. Polymers, 2021, 13, 651.	2.0	8
26	Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making. Molecules, 2021, 26, 1371.	1.7	12
27	Microwave-Assisted Extraction of Curcuma longa L. Oil: Optimization, Chemical Structure and Composition, Antioxidant Activity and Comparison with Conventional Soxhlet Extraction. Molecules, 2021, 26, 1516.	1.7	26
28	Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva (Maclura tinctoria) Heartwood Extract. Polymers, 2021, 13, 908.	2.0	5
29	Biphasic reaction systems for lignocellulosic biomass revalorisation. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100435.	3.2	5
30	Effect of Deterpenated Origanum majorana L. Essential Oil on the Physicochemical and Biological Properties of Chitosan/β-Chitin Nanofibers Nanocomposite Films. Polymers, 2021, 13, 1507.	2.0	8
31	Synthesis of advanced biobased green materials from renewable biopolymers. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100436.	3.2	25
32	Optimization of Ultrasound Assisted Extraction of Bioactive Compounds from Apple Pomace. Molecules, 2021, 26, 3783.	1.7	25
33	Valorization of heat-treated wood after service life through a cascading process for the production of lignocellulosic derivatives. Resources, Conservation and Recycling, 2021, 170, 105602.	5. 3	2
34	Energy and environmental analysis of flavonoids extraction from bark using alternative solvents. Journal of Cleaner Production, 2021, 308, 127286.	4.6	14
35	Acid hydrolysis of almond shells in a biphasic reaction system: Obtaining of purified hemicellulosic monosaccharides in a single step. Bioresource Technology, 2021, 336, 125311.	4.8	11
36	Eco-friendly isolation and characterization of nanochitin from different origins by microwave irradiation: Optimization using response surface methodology. International Journal of Biological Macromolecules, 2021, 186, 218-226.	3.6	17

#	Article	IF	Citations
37	Life Cycle Assessment of various biorefinery approaches for the valorisation of almond shells. Sustainable Production and Consumption, 2021, 28, 749-759.	5 . 7	13
38	Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydrate Polymers, 2021, 271, 118424.	5.1	18
39	Wood Fireproofing Coatings Based on Biobased Phenolic Resins. ACS Sustainable Chemistry and Engineering, 2021, 9, 1729-1740.	3.2	25
40	Optimization of the extraction of galactoglucomannans from <i>Pinus halepensis</i> Holzforschung, 2021, 75, 563-573.	0.9	2
41	Antioxidant, Antifungal and Phytochemical Investigations of Capparis spinosa L Agriculture (Switzerland), 2021, 11, 1025.	1.4	3
42	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35
43	Extraction of flavonoid compounds from bark using sustainable deep eutectic solvents. Sustainable Chemistry and Pharmacy, 2021, 24, 100544.	1.6	13
44	Removal of Dyes and Heavy Metals with Clays and Diatomite. Environmental Chemistry for A Sustainable World, 2021, , 539-569.	0.3	2
45	Microwave assisted synthesis of poly (<i>N</i> -vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: Equilibrium, kinetic, thermodynamics and regeneration studies. Journal of Dispersion Science and Technology, 2020, 41, 828-840.	1.3	12
46	Direct lignin depolymerization process from sulfur-free black liquors. Fuel Processing Technology, 2020, 197, 106201.	3.7	20
47	Assessment of green approaches for the synthesis of physically crosslinked lignin hydrogels. Journal of Industrial and Engineering Chemistry, 2020, 81, 475-487.	2.9	39
48	Organic acids as a greener alternative for the precipitation of hardwood kraft lignins from the industrial black liquor. International Journal of Biological Macromolecules, 2020, 142, 583-591.	3.6	42
49	A novel and efficient approach to obtain lignin-based polyols with potential industrial applications. Polymer Chemistry, 2020, 11 , $7362-7369$.	1.9	10
50	Multiproduct biorefinery based on almond shells: Impact of the delignification stage on the manufacture of valuable products. Bioresource Technology, 2020, 315, 123896.	4.8	28
51	Study of a renewable capping agent addition in lignin base catalyzed depolymerization process. Fuel, 2020, 280, 118524.	3.4	13
52	Hydrophobization and Photo-Stabilization of Radiata Pinewood: The Effect of the Esterification on Thermal and Mechanical Properties. Forests, 2020, 11, 1243.	0.9	4
53	Termite Resistance of a Fast-Growing Pine Wood Treated by In Situ Polymerization of Three Different Precursors. Forests, 2020, 11, 865.	0.9	10
54	Thermochemical and Mechanical Properties of Pine Wood Treated by In Situ Polymerization of Methyl Methacrylate (MMA). Forests, 2020, 11, 768.	0.9	8

#	Article	IF	CITATIONS
55	Simultaneous microwave-ultrasound assisted extraction of bioactive compounds from bark. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108100.	1.8	34
56	Liquefaction of corn husks and properties of biodegradable biopolyol blends. Journal of Chemical Technology and Biotechnology, 2020, 95, 2973-2982.	1.6	9
57	Lignin - montmorillonite hydrogels as toluene adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125108.	2.3	22
58	Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 2020, 154, 683-697.	3.6	90
59	Fractionation of non-timber wood from Atlantic mixed forest into high-value lignocellulosic materials. Journal of Wood Chemistry and Technology, 2020, 40, 200-212.	0.9	0
60	Lignins from Agroindustrial by-Products as Natural Ingredients for Cosmetics: Chemical Structure and In Vitro Sunscreen and Cytotoxic Activities. Molecules, 2020, 25, 1131.	1.7	41
61	Fast methods for the identification of suitable chemoâ€enzymatic treatments of Kraft lignin to obtain aromatic compounds. Biofuels, Bioproducts and Biorefining, 2020, 14, 521-532.	1.9	5
62	Sonochemical production of nanoscaled crystalline cellulose using organic acids. Green Chemistry, 2020, 22, 4627-4639.	4.6	18
63	Using $\hat{l}\pm$ -chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. Polymer Degradation and Stability, 2020, 179, 109227.	2.7	18
64	Production and characterization of chitosan-fungal extract films. Food Bioscience, 2020, 35, 100545.	2.0	52
65	Effect of the formulation parameters on the absorption capacity of smart lignin-hydrogels. European Polymer Journal, 2020, 129, 109631.	2.6	21
66	Enhancement of UV absorbance and mechanical properties of chitosan films by the incorporation of solvolytically fractionated lignins. International Journal of Biological Macromolecules, 2020, 155, 447-455.	3.6	39
67	Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification. Biomolecules, 2020, 10, 1363.	1.8	19
68	Chitosan-based materials as templates for essential oils. , 2020, , 689-720.		1
69	Crosslinked chitosan/poly(vinyl alcohol)-based polyelectrolytes for proton exchange membranes. Reactive and Functional Polymers, 2019, 142, 213-222.	2.0	26
70	Formulation of Multifunctional Materials Based on the Reaction of Glyoxalated Lignins and a Nanoclay/Nanosilicate. Biomacromolecules, 2019, 20, 3535-3546.	2.6	14
71	Production and characterization of lignin and cellulose fractions obtained from pretreated vine shoots by microwave assisted alkali treatment. Bioresource Technology, 2019, 289, 121726.	4.8	51
72	Purification of industrial tannin extract through simple solid-liquid extractions. Industrial Crops and Products, 2019, 139, 111502.	2.5	20

#	Article	lF	CITATIONS
73	Effect of the Chemical Composition of Free-Terpene Hydrocarbons Essential Oils on Antifungal Activity. Molecules, 2019, 24, 3532.	1.7	15
74	Barrier properties of cellulose nanofiber film as an external layer of particleboard. Clean Technologies and Environmental Policy, 2019, 21, 2073-2079.	2.1	10
75	Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution. Materials, 2019, 12, 361.	1.3	35
76	Characterisation of bark of six species from mixed Atlantic forest. Industrial Crops and Products, 2019, 137, 276-284.	2. 5	37
77	Physicochemical and in vitro cytotoxic properties of chitosan from mushroom species (Boletus) Tj ETQq1 1 0.784	13 <u>14</u> rgBT	/Overlock 10
78	Liquefaction of Kraft lignin using polyhydric alcohols and organic acids as catalysts for sustainable polyols production. Industrial Crops and Products, 2019, 137, 687-693.	2.5	34
79	In vitro cytotoxicity studies of industrial Eucalyptus kraft lignins on mouse hepatoma, melanoma and Chinese hamster ovary cells. International Journal of Biological Macromolecules, 2019, 135, 353-361.	3.6	24
80	Preparation of novel carboxymethylchitosan-graft-poly(methylmethacrylate) under microwave irradiation as a chitosan-based material for Hg2+ removal. Microchemical Journal, 2019, 148, 531-540.	2.3	13
81	Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 2019, 133, 663-673.	3.6	45
82	Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production. Renewable Energy, 2019, 142, 612-623.	4.3	50
83	UV–vis protective poly(vinyl alcohol)/bio-oil innovative films. Industrial Crops and Products, 2019, 131, 281-292.	2.5	31
84	Conversion of Waste Parasitic Insect (Hylobius abietis L.) into Antioxidative, Antimicrobial and Biodegradable Films. Journal of Renewable Materials, 2019, 7, 215-226.	1.1	6
85	Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydrate Polymers, 2019, 207, 34-43.	5.1	52
86	Lignin Separation and Fractionation by Ultrafiltration. , 2019, , 229-265.		20
87	Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocolloids, 2019, 89, 20-28.	5.6	45
88	Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 2019, 121, 889-904.	3.6	303
89	Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 2019, 206, 1138-1155.	4.6	117
90	Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. International Journal of Biological Macromolecules, 2018, 115, 438-446.	3.6	55

#	Article	lF	CITATIONS
91	Evolution of thermally modified wood properties exposed to natural and artificial weathering and its potential as an element for façades systems. Construction and Building Materials, 2018, 172, 233-242.	3.2	32
92	False flax (Camelina sativa) seed oil as suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films. International Journal of Biological Macromolecules, 2018, 114, 1224-1232.	3.6	35
93	Dataset on cellulose nanoparticles from blue agave bagasse and blue agave leaves. Data in Brief, 2018, 18, 150-155.	0.5	0
94	Yerba mate waste: A sustainable resource of antioxidant compounds. Industrial Crops and Products, 2018, 113, 398-405.	2.5	61
95	Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of <i>Pistacia terebinthus</i> for active food packaging. RSC Advances, 2018, 8, 3941-3950.	1.7	196
96	Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective. Science of the Total Environment, 2018, 624, 225-240.	3.9	43
97	Effect of different animal fat and plant oil additives on physicochemical, mechanical, antimicrobial and antioxidant properties of chitosan films. International Journal of Biological Macromolecules, 2018, 111, 475-484.	3.6	48
98	Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydrate Polymers, 2018, 183, 294-302.	5.1	63
99	Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly(lactic acid) microfibrils. Cellulose, 2018, 25, 3393-3405.	2.4	8
100	Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings, 2018, 119, 145-154.	1.9	32
101	Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydrate Polymers, 2018, 192, 75-83.	5.1	72
102	An inclusive physicochemical comparison of natural and synthetic chitin films. International Journal of Biological Macromolecules, 2018, 106, 1062-1070.	3.6	21
103	Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innovative Food Science and Emerging Technologies, 2018, 45, 287-297.	2.7	146
104	Formation of Palygorskite Clay from Treated Diatomite and its Application for the Removal of Heavy Metals from Aqueous Solution. Water (Switzerland), 2018, 10, 1257.	1.2	19
105	Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly(lactic acid) based films. EXPRESS Polymer Letters, 2018, 12, 543-555.	1.1	36
106	Multistage treatment of almonds waste biomass: Characterization and assessment of the potential applications of raw material and products. Waste Management, 2018, 80, 40-50.	3.7	26
107	Economic analysis of a biorefinery process for catechol production from lignin. Journal of Cleaner Production, 2018, 198, 133-142.	4.6	33
108	Development of Bioactive Paper by Capsaicin Derivative Grafting Onto Cellulose., 2018,, 199-233.		1

#	Article	IF	Citations
109	Energetic assessment of lignin extraction processes by simulation. Computer Aided Chemical Engineering, 2018, , 1535-1540.	0.3	2
110	Effect of Reaction Conditions on the Surface Modification of Cellulose Nanofibrils with Aminopropyl Triethoxysilane. Coatings, 2018, 8, 139.	1.2	46
111	Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules, 2018, 23, 372.	1.7	10
112	Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Advances, 2018, 8, 24525-24533.	1.7	93
113	Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products, 2018, 124, 582-592.	2.5	60
114	Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 2018, 167, 323-330.	3.8	19
115	Chitin Nanoforms Provide Mechanical and Topological Cues to Support Growth of Human Adipose Stem Cells in Chitosan Matrices. Biomacromolecules, 2018, 19, 3000-3012.	2.6	27
116	Exergoeconomic Analysis. Green Energy and Technology, 2018, , 895-904.	0.4	3
117	Energy and environmental profile comparison of TMT production from two different companies - a Spanish/Portuguese case study. IForest, 2018, 11, 155-161.	0.5	9
118	Energy Balance/Efficiency and Economic Analysis of Biofuel Production., 2018,, 475-520.		0
119	Physicochemical characterization of leaf extracts from Ocotea lancifolia and its effect against wood-rot fungi. International Biodeterioration and Biodegradation, 2017, 117, 158-170.	1.9	13
120	Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach. Carbohydrate Polymers, 2017, 163, 162-169.	5.1	29
121	Characterization and determination of the S/G ratio via Py-GC/MS of agricultural and industrial residues. Industrial Crops and Products, 2017, 97, 469-476.	2.5	44
122	Novel Porous Materials Obtained from Technical Lignins and Their Methacrylate Derivatives Copolymerized with Styrene and Divinylbenzene. ChemistrySelect, 2017, 2, 2257-2264.	0.7	4
123	Evaluation of different agricultural residues as raw materials for pulp and paper production using a semichemical process. Journal of Cleaner Production, 2017, 156, 184-193.	4.6	37
124	Antioxidant and biocide behaviour of lignin fractions from apple tree pruning residues. Industrial Crops and Products, 2017, 104, 242-252.	2.5	59
125	Kraft Lignin-Based Polyols by Microwave: Optimizing Reaction Conditions. Journal of Wood Chemistry and Technology, 2017, 37, 343-358.	0.9	14
126	Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Industrial Crops and Products, 2017, 107, 105-113.	2.5	61

#	Article	IF	Citations
127	Analytical characterization of purified mimosa (Acacia mearnsii) industrial tannin extract: Single and sequential fractionation. Separation and Purification Technology, 2017, 186, 218-225.	3.9	35
128	Lignin depolymerization for phenolic monomers production by sustainable processes. Journal of Energy Chemistry, 2017, 26, 622-631.	7.1	76
129	Incorporation of sporopollenin enhances acid–base durability, hydrophobicity, and mechanical, antifungal and antioxidant properties of chitosan films. Journal of Industrial and Engineering Chemistry, 2017, 47, 236-245.	2.9	22
130	Deterpenation of Origanum majorana L. essential oil by reduced pressure steam distillation. Industrial Crops and Products, 2017, 109, 116-122.	2.5	25
131	On chemistry of γ-chitin. Carbohydrate Polymers, 2017, 176, 177-186.	5.1	225
132	Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. International Journal of Biological Macromolecules, 2017, 105, 1401-1411.	3.6	56
133	Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: Toward the development of an integrated biorefinery. Bioresource Technology, 2017, 244, 328-337.	4.8	57
134	Valorization of Vine Shoots Based on the Autohydrolysis Fractionation Optimized by a Kinetic Approach. Industrial & Engineering Chemistry Research, 2017, 56, 14164-14171.	1.8	16
135	Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. International Journal of Biological Macromolecules, 2017, 104, 944-952.	3.6	116
136	Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. Journal of Cleaner Production, 2017, 142, 2609-2617.	4.6	57
137	From banana stem to conductive paper: A capacitive electrode and gas sensor. Sensors and Actuators B: Chemical, 2017, 240, 459-467.	4.0	25
138	The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose, 2017, 24, 693-704.	2.4	31
139	Esterified organosolv lignin as hydrophobic agent for use on wood products. Progress in Organic Coatings, 2017, 103, 143-151.	1.9	41
140	Catalytic Cascade Transformations of Biomass into Polyols. Biofuels and Biorefineries, 2017, , 187-219.	0.5	1
141	Key issues in reinforcement involving nanocellulose. , 2017, , 401-425.		6
142	The Biorefinery Concept for the Industrial Valorization of Grape Processing By-Products., 2017,, 29-53.		21
143	The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid) Films. Materials, 2017, 10, 546.	1.3	42
144	Triethyl Citrate (TEC) as a Dispersing Aid in Polylactic Acid/Chitin Nanocomposites Prepared via Liquid-Assisted Extrusion. Polymers, 2017, 9, 406.	2.0	37

#	Article	IF	Citations
145	Production and Emerging Applications of Bioactive Oligosaccharides from Biomass Hemicelluloses by Hydrothermal Processing., 2017,, 253-283.		8
146	Chemical characterization of wood and extractives of fast-growing <i>Schizolobium parahyba </i> Pinus taeda Wood Material Science and Engineering, 2016, 11, 209-216.	1.1	14
147	Wood under fresh water: Effect on the chemical properties and on decay resistance. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	1
148	Functionalization of Cellulose Nanocrystals in Choline Lactate Ionic Liquid. Materials, 2016, 9, 499.	1.3	17
149	Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems. Materials, 2016, 9, 1002.	1.3	43
150	Bromination of guaiacol and syringol using ionic liquids to obtain bromides. Journal of Chemical Technology and Biotechnology, 2016, 91, 1809-1815.	1.6	7
151	Chapter 1 Bio-Based New Materials for Packaging Applications. , 2016, , 1-18.		0
152	Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresource Technology, 2016, 211, 636-644.	4.8	84
153	Willow Lignin Oxidation and Depolymerization under Low Cost Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2016, 4, 5277-5288.	3.2	57
154	Lignin-ester derivatives as novel thermoplastic materials. RSC Advances, 2016, 6, 86909-86917.	1.7	37
155	Oxidative Depolymerization of Lignin Using a Novel Polyoxometalate-Protic Ionic Liquid System. ACS Sustainable Chemistry and Engineering, 2016, 4, 6031-6036.	3.2	89
156	Comparison between developed models using response surface methodology (RSM) and artificial neural networks (ANNs) with the purpose to optimize oligosaccharide mixtures production from sugar beet pulp. Industrial Crops and Products, 2016, 92, 290-299.	2.5	46
157	Development of novel antimicrobial films based on poly(lactic acid) and essential oils. Reactive and Functional Polymers, 2016, 109, 1-8.	2.0	60
158	Lignocellulosic-based multilayer self-bonded composites with modified cellulose nanoparticles. Composites Part B: Engineering, 2016, 106, 300-307.	5.9	14
159	Characterization of pine wood liquid and solid residues generated during industrial hydrothermal treatment. Biomass and Bioenergy, 2016, 95, 174-181.	2.9	7
160	Industrial and crop wastes: A new source for nanocellulose biorefinery. Industrial Crops and Products, 2016, 93, 26-38.	2.5	263
161	Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 140-148.	2.7	93
162	Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. Reactive and Functional Polymers, 2016, 104, 45-52.	2.0	31

#	Article	IF	CITATIONS
163	Exergy analysis: An optimization tool for the performance evaluation of an organosolv process. Applied Thermal Engineering, 2016, 106, 1062-1066.	3.0	7
164	Bio-oil from base-catalyzed depolymerization of organosolv lignin as an antifungal agent for wood. Wood Science and Technology, 2016, 50, 599-615.	1.4	22
165	Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydrate Polymers, 2016, 144, 41-49.	5.1	82
166	The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 186-195.	3.8	165
167	Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials and Design, 2016, 92, 846-852.	3.3	94
168	Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Industrial Crops and Products, 2016, 83, 155-165.	2.5	199
169	Depolymerization of Different Organosolv Lignins in Supercritical Methanol, Ethanol, and Acetone To Produce Phenolic Monomers. ACS Sustainable Chemistry and Engineering, 2016, 4, 1373-1380.	3.2	59
170	Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry, 2016, 18, 834-841.	4.6	111
171	Study of the influence of reutilization ionic liquid on lignin extraction. Journal of Cleaner Production, 2016, 111, 125-132.	4.6	40
172	Color de la madera de dos eucaliptos expuestas al intemperismo natural en tres entornos ambientales diferentes. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	1
173	Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology, 2015, 117, 26-31.	3.8	68
174	Chemical modification of fast-growing eucalyptus wood. Wood Science and Technology, 2015, 49, 273-288.	1.4	26
175	Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 2015, 46, 93-102.	5.6	139
176	The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 2015, 73, 132-138.	5.9	143
177	Kraft lignin as filler in PLA to improve ductility and thermal properties. Industrial Crops and Products, 2015, 72, 46-53.	2.5	214
178	Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16558-16564.	4.0	63
179	Chemical analysis of industrial-scale hydrothermal wood degraded by wood-rotting basidiomycetes and its action mechanisms. Polymer Degradation and Stability, 2015, 117, 37-45.	2.7	12
180	Different routes to turn chitin into stunning nano-objects. European Polymer Journal, 2015, 68, 503-515.	2.6	120

#	Article	IF	Citations
181	Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. Reactive and Functional Polymers, 2015, 89, 31-39.	2.0	76
182	Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Industrial Crops and Products, 2015, 71, 44-53.	2.5	191
183	Comparative evaluation of different thermally modified wood samples finishing with UV-curable and waterborne coatings. Applied Surface Science, 2015, 357, 1444-1453.	3.1	33
184	Liquefied agricultural residues for film elaboration. Industrial Crops and Products, 2015, 78, 19-28.	2.5	21
185	Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration. Separation and Purification Technology, 2015, 152, 172-179.	3.9	28
186	Microwave-Assisted Pretreatment of Lignocellulosic Biomass to Produce Biofuels and Value-Added Products. Biofuels and Biorefineries, 2015, , 197-224.	0.5	14
187	Processing of $\hat{l}\pm$ -chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger. Carbohydrate Polymers, 2015, 116, 286-291.	5.1	133
188	Influence of Reaction Conditions on Lignin Hydrothermal Treatment. Frontiers in Energy Research, 2014, 2, .	1.2	22
189	Assessment of biorefinery process intensification by ultrasound technology. Clean Technologies and Environmental Policy, 2014, 16, 1403-1410.	2.1	6
190	Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116, 617-624.	3.4	199
191	Study of different post-hydrolysis methods to improve hemicellulosic monomers extraction. Biomass Conversion and Biorefinery, 2014, 4, 249-258.	2.9	2
192	Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. Journal of Analytical and Applied Pyrolysis, 2014, 107, 256-266.	2.6	68
193	Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass and Bioenergy, 2014, 66, 379-386.	2.9	107
194	Bread residues conversion into lactic acid by alkaline hydrothermal treatments. Chemical Engineering Journal, 2014, 250, 326-330.	6.6	18
195	Corncob arabinoxylan for new materials. Carbohydrate Polymers, 2014, 102, 12-20.	5.1	71
196	Physicochemical properties of PLA lignin blends. Polymer Degradation and Stability, 2014, 108, 330-338.	2.7	232
197	Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chemical Engineering Journal, 2014, 256, 356-364.	6.6	142
198	Thermochemical and hygroscopicity properties of pinewood treated by in situ copolymerisation with methacrylate monomers. Thermochimica Acta, 2014, 596, 70-78.	1.2	18

#	Article	IF	CITATIONS
199	Antifungal cellulose by capsaicin grafting. Cellulose, 2014, 21, 1909-1919.	2.4	18
200	Nanopaper from almond (Prunus dulcis) shell. Cellulose, 2014, 21, 1619-1629.	2.4	39
201	Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Industrial Crops and Products, 2014, 53, 102-110.	2.5	75
202	Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chemical Society Reviews, 2014, 43, 7485-7500.	18.7	850
203	Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. Journal of Industrial and Engineering Chemistry, 2014, 20, 1103-1108.	2.9	72
204	Characterisation of Kraft lignin separated by gradient acid precipitation. Industrial Crops and Products, 2014, 55, 149-154.	2.5	123
205	Integration of a solar thermal system in canned fish factory. Applied Thermal Engineering, 2014, 70, 1062-1072.	3.0	23
206	Composition and structure of organosolv lignins from four eucalypt species. Wood Science and Technology, 2014, 48, 873-885.	1.4	25
207	Xylan–cellulose films: Improvement of hydrophobicity, thermal and mechanical properties. Carbohydrate Polymers, 2014, 112, 56-62.	5.1	67
208	Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Applied Catalysis B: Environmental, 2014, 145, 43-55.	10.8	156
209	Different Extraction Methods to Obtain Lignin from Almond Shell. Journal of Biobased Materials and Bioenergy, 2014, 8, 370-376.	0.1	13
210	Lignin liquefaction under microwave heating. Journal of Applied Polymer Science, 2013, 130, 3292-3298.	1.3	51
211	Multicomponents adsorption of modified cellulose microfibrils. Desalination and Water Treatment, 2013, 51, 2153-2161.	1.0	2
212	Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil. Colloid and Polymer Science, 2013, 291, 1247-1254.	1.0	4
213	Obtaining of eucalyptus microfibrils for adsorption of aromatic compounds in aqueous solution. Chemical Engineering Journal, 2013, 229, 42-49.	6.6	14
214	Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process. Energy, 2013, 55, 23-37.	4.5	31
215	Extraction and revalorization of olive tree (Olea europea) pruning lignin. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 552-559.	2.7	11
216	Unsaturated Polyester Nanocomposites modified with fibrillated cellulose and PEO-b-PPO-b-PEO block copolymer. Composites Science and Technology, 2013, 89, 120-126.	3.8	28

#	Article	IF	CITATIONS
217	Biorefining of olive tree (Olea europea) pruning. Biomass and Bioenergy, 2013, 59, 503-511.	2.9	15
218	Furfural production from corn cobs autohydrolysis liquors by microwave technology. Industrial Crops and Products, 2013, 42, 513-519.	2.5	77
219	Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogenâ€Donating Solvents. ChemCatChem, 2013, 5, 977-985.	1.8	93
220	Fractionation of Organosolv Lignin from Olive Tree Clippings and its Valorization to Simple Phenolic Compounds. ChemSusChem, 2013, 6, 529-536.	3.6	82
221	Fermentable sugars recovery from grape stalks for bioethanol production. Renewable Energy, 2013, 60, 553-558.	4.3	29
222	Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products, 2013, 45, 360-366.	2.5	74
223	Influence of Microwave Heating on Chemical Properties of Liquefied Lignocellulosic Residues. Industrial & Description on Chemistry Research, 2013, 52, 2755-2761.	1.8	10
224	Effect of different hemicelluloses characteristics on film forming properties. Industrial Crops and Products, 2013, 47, 331-338.	2.5	49
225	Effect of the photocatalytic activity of TiO2 on lignin depolymerization. Chemosphere, 2013, 91, 1355-1361.	4.2	63
226	Lignin extraction and purification with ionic liquids. Journal of Chemical Technology and Biotechnology, 2013, 88, 1248-1257.	1.6	53
227	Pinch and exergy based thermosolar integration in a dairy process. Applied Thermal Engineering, 2013, 50, 464-474.	3.0	33
228	Influence of extraction treatment on olive tree (<i>Olea europaea</i>) pruning lignin structure. Environmental Progress and Sustainable Energy, 2013, 32, 1187-1194.	1.3	21
229	Evaluation of the biomass fractionation capability of the ultrafiltration permeate: A learning project for chemical engineering students. Education for Chemical Engineers, 2012, 7, e241-e246.	2.8	1
230	Effect of ultrasound treatment on the physicochemical properties of alkaline lignin. Chemical Engineering and Processing: Process Intensification, 2012, 62, 150-158.	1.8	41
231	Determination of multiple sulfur isotopes in glasses: A reappraisal of the MORB δ34S. Chemical Geology, 2012, 334, 189-198.	1.4	131
232	Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochemical Engineering Journal, 2012, 67, 173-185.	1.8	110
233	Separation and Purification of Hemicellulose by Ultrafiltration. Industrial & Engineering Chemistry Research, 2012, 51, 523-530.	1.8	26
234	Properties of Soda and Organosolv Lignins from Apple Tree Pruning. Journal of Biobased Materials and Bioenergy, 2012, 6, 329-335.	0.1	6

#	Article	lF	CITATIONS
235	Organosolv lignin depolymerization with different base catalysts. Journal of Chemical Technology and Biotechnology, 2012, 87, 1593-1599.	1.6	194
236	Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chemical Engineering Journal, 2012, 181-182, 655-660.	6.6	77
237	Process for olive tree pruning lignin revalorisation. Chemical Engineering Journal, 2012, 193-194, 396-403.	6.6	34
238	Antioxidant activity of phenolic compounds obtained by autohydrolysis of corn residues. Industrial Crops and Products, 2012, 36, 164-171.	2.5	33
239	Integral use of pepper stems. Industrial Crops and Products, 2012, 40, 110-115.	2.5	5
240	Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 2012, 103, 239-248.	4.8	101
241	Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresource Technology, 2012, 107, 267-274.	4.8	82
242	Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues. Bioresource Technology, 2012, 108, 155-161.	4.8	36
243	Valorization of some lignocellulosic agroâ€industrial residues to obtain biopolyols. Journal of Chemical Technology and Biotechnology, 2012, 87, 244-249.	1.6	58
244	Enhancement of Lignin Production from Olive Tree Pruning Integrated in a Green Biorefinery. Industrial & Engineering Chemistry Research, 2011, 50, 6573-6579.	1.8	36
245	Comparative study on heavy metal removal from industrial effluents by various separation methods. Desalination and Water Treatment, 2011, 35, 242-246.	1.0	6
246	Polyol production by chemical modification of date seeds. Industrial Crops and Products, 2011, 34, 1035-1040.	2.5	76
247	Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chemical Engineering Journal, 2011, 175, 169-175.	6.6	63
248	Ultrasound-assisted fractionation of the lignocellulosic material. Bioresource Technology, 2011, 102, 6326-6330.	4.8	88
249	Energy and economic assessment of soda and organosolv biorefinery processes. Biomass and Bioenergy, 2011, 35, 516-525.	2.9	44
250	Modified cellulose microfibrils as benzene adsorbent. Desalination, 2011, 270, 143-150.	4.0	24
251	Integration of a solar thermal system in a dairy process. Renewable Energy, 2011, 36, 1843-1853.	4.3	65
252	Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochemistry, 2010, 45, 935-940.	1.8	147

#	Article	IF	Citations
253	Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology, 2010, 71, 38-43.	3.9	280
254	Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process. Journal of Industrial and Engineering Chemistry, 2010, 16, 293-298.	2.9	36
255	Miscanthus sinensis fractionation by different reagents. Chemical Engineering Journal, 2010, 156, 49-55.	6.6	58
256	Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal, 2010, 157, 93-99.	6.6	196
257	Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chemical Engineering Journal, 2010, 157, 113-120.	6.6	99
258	Energy and Economic Assessment of Soda and Organosolv Biorefinery Processes. Computer Aided Chemical Engineering, 2010, , 115-120.	0.3	2
259	Oxypropylation of Rapeseed Cake Residue Generated in the Biodiesel Production Process. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 1526-1529.	1.8	31
260	Energy Optimization of a Kraft Pulp Mill. Computer Aided Chemical Engineering, 2009, , 417-422.	0.3	3
261	Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chemical Engineering Journal, 2009, 148, 106-114.	6.6	183
262	Mimosa and chestnut tannin extracts reacted with hexamine in solution. Journal of Thermal Analysis and Calorimetry, 2009, 96, 515-521.	2.0	25
263	Characterization of lignins obtained by selective precipitation. Separation and Purification Technology, 2009, 68, 193-198.	3.9	186
264	Lignins for phenol replacement in novolacâ€type phenolic formulations. II. Flexural and compressive mechanical properties. Journal of Applied Polymer Science, 2008, 107, 159-165.	1.3	32
265	Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technology, 2008, 99, 486-491.	4.8	64
266	Effect of organosolv and soda pulping processes on the metals content of non-woody pulps. Bioresource Technology, 2008, 99, 6621-6625.	4.8	34
267	Isoconversional kinetic analysis of novolac-type lignophenolic resins cure. Thermochimica Acta, 2008, 471, 80-85.	1.2	40
268	Rice straw pulp obtained by using various methods. Bioresource Technology, 2008, 99, 2881-2886.	4.8	151
269	Simulation of tagasaste pulping using soda-anthraquinone. Bioresource Technology, 2008, 99, 7270-7277.	4.8	18
270	Isocyanate curing of novolac-type ligno-phenol–formaldehyde resins. Industrial Crops and Products, 2008, 27, 208-213.	2.5	28

#	Article	IF	CITATIONS
271	Organosolv Pulping Process Simulations. Industrial & Engineering Chemistry Research, 2008, 47, 1903-1909.	1.8	19
272	Lignins for phenol replacement in novolacâ€type phenolic formulations, part I: Lignophenolic resins synthesis and characterization. Journal of Applied Polymer Science, 2007, 106, 2313-2319.	1.3	44
273	Predicting flotation efficiency using neural networks. Chemical Engineering and Processing: Process Intensification, 2007, 46, 314-322.	1.8	35
274	Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 2007, 98, 1655-1663.	4.8	883
275	Modified cellulose fibres for adsorption of organic compound in aqueous solution. Separation and Purification Technology, 2006, 52, 332-342.	3.9	85
276	Curing of phenolic resins modified with chestnut tannin extract. Journal of Applied Polymer Science, 2006, 101, 2034-2039.	1.3	15
277	Effects of hygrothermal ageing on mechanical properties of flax pulps and their polypropylene matrix composites. Journal of Applied Polymer Science, 2006, 102, 3438-3445.	1.3	24
278	Simulation and optimisation of a high grade coated paper mill. Journal of Cleaner Production, 2005, 13, 1424-1433.	4.6	9
279	Modeling of adsorption heat pumps with heat regeneration. Applied Thermal Engineering, 2004, 24, 431-447.	3.0	52
280	Effect of mass transfer kinetics on the performance of adsorptive heat pump systems. Applied Thermal Engineering, 2002, 22, 23-40.	3.0	53
281	On Intrinsic Exergy Efficiency and Heat Pumps. Chemical Engineering Research and Design, 2000, 78, 180-183.	2.7	7
282	A new concept in gas-fired heat pump reversed rectification heat pump. Renewable Energy, 1994, 5, 1235-1239.	4.3	0
283	NEW TECHNIQUES FOR UPGRADING INDUSTRIAL WASTE HEAT. , 1993, , 384-391.		0
284	Comparative adsorption of anionic dye Congo red and purification of olive mill wastewater by chitin and their derivatives., 0, 220, 392-408.		3
285	Cellulose modified diatomite for toluene removal from aqueous solution., 0, 150, 228-236.		3
286	Combined Extraction and Ethanol Organosolv Fractionation of Exhausted Olive Pomace for Bioactive Compounds. Advanced Sustainable Systems, 0, , 2100361.	2.7	8