Seiji Yamazoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406770/publications.pdf

Version: 2024-02-01

157	5,486	87723	102304
papers	citations	h-index	g-index
168	168	168	5148
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 2014, 47, 816-824.	7.6	520
2	A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. Journal of the American Chemical Society, 2015, 137, 1206-1212.	6.6	322
3	Binding Motif of Terminal Alkynes on Gold Clusters. Journal of the American Chemical Society, 2013, 135, 9450-9457.	6.6	179
4	Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nature Communications, 2020, 11, 2838.	5.8	169
5	Thiolate-Mediated Selectivity Control in Aerobic Alcohol Oxidation by Porous Carbon-Supported Au ₂₅ Clusters. ACS Catalysis, 2014, 4, 3696-3700.	5. 5	168
6	XAFS Study of Tungsten L ₁ - and L ₃ -Edges:  Structural Analysis of WO ₃ Species Loaded on TiO ₂ as a Catalyst for Photo-oxidation of NH ₃ . Journal of Physical Chemistry C, 2008, 112, 6869-6879.	1.5	161
7	Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nature Communications, 2016, 7, 10414.	5. 8	140
8	A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society, 2012, 134, 14295-14297.	6.6	122
9	Phototunable Diarylethene Microcrystalline Surfaces: Lotus and Petal Effects upon Wetting. Angewandte Chemie - International Edition, 2010, 49, 5942-5944.	7.2	105
10	Preferential Location of Coinage Metal Dopants (M = Ag or Cu) in [Au _{25â€"<i>x</i>} M _{<i>x</i>} (SC ₂ H ₄ Ph) ₁₈] <su (<i="">x â¹/4 1) As Determined by Extended X-ray Absorption Fine Structure and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2014, 118, 25284-25290.</su>	p>â^; <td>^{p>} 98</td>	^{p>} 98
11	Formation of a Pd@Au ₁₂ Superatomic Core in Au ₂₄ Pd ₁ (SC ₁₂ H ₂₅) ₁₈ Probed by ¹⁹⁷ Au Mössbauer and Pd K-Edge EXAFS Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3579-3583.	2.1	89
12	Dendrimer-Encapsulated Copper Cluster as a Chemoselective and Regenerable Hydrogenation Catalyst. ACS Catalysis, 2013, 3, 182-185.	5 . 5	85
13	Selenolate-Protected Au ₃₈ Nanoclusters: Isolation and Structural Characterization. Journal of Physical Chemistry Letters, 2013, 4, 3181-3185.	2.1	78
14	Surface Plasmon Resonance in Gold Ultrathin Nanorods and Nanowires. Journal of the American Chemical Society, 2014, 136, 8489-8491.	6.6	76
15	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie - International Edition, 2021, 60, 21340-21350.	7.2	74
16	Mechanism of Photo-Oxidation of NH3over TiO2:  Fourier Transform Infrared Study of the Intermediate Species. Journal of Physical Chemistry C, 2007, 111, 11077-11085.	1.5	69
17	Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption. Journal of the American Chemical Society, 2015, 137, 7027-7030.	6.6	68
18	Au ₂₅ -Loaded BaLa ₄ Ti ₄ O ₁₅ Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method. Journal of Physical Chemistry C, 2018, 122, 13669-13681.	1.5	67

#	Article	IF	CITATIONS
19	Reversible Photocontrol of Surface Wettability between Hydrophilic and Superhydrophobic Surfaces on an Asymmetric Diarylethene Solid Surface. Langmuir, 2011, 27, 6395-6400.	1.6	64
20	Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa ₄ Ti ₄ O ₁₅ . ACS Applied Energy Materials, 2019, 2, 4175-4187.	2.5	61
21	Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives. ACS Catalysis, 2021, 11, 750-757.	5.5	60
22	Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance. Journal of the American Chemical Society, 2018, 140, 6640-6647.	6.6	58
23	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	6.6	55
24	Au ₂₅ Clusters Containing Unoxidized Tellurolates in the Ligand Shell. Journal of Physical Chemistry Letters, 2014, 5, 2072-2076.	2.1	54
25	Synthesis and Catalytic Application of Ag ₄₄ Clusters Supported on Mesoporous Carbon. Journal of Physical Chemistry C, 2015, 119, 27483-27488.	1.5	54
26	Tuning the electronic structure of thiolate-protected 25-atom clusters by co-substitution with metals having different preferential sites. Dalton Transactions, 2016, 45, 18064-18068.	1.6	51
27	Suppressing Isomerization of Phosphine-Protected Au ₉ Cluster by Bond Stiffening Induced by a Single Pd Atom Substitution. Inorganic Chemistry, 2017, 56, 8319-8325.	1.9	50
28	A twisted bi-icosahedral Au ₂₅ cluster enclosed by bulky arenethiolates. Chemical Communications, 2014, 50, 839-841.	2.2	49
29	Visible Light Absorbed NH ₂ Species Derived from NH ₃ Adsorbed on TiO ₂ for Photoassisted Selective Catalytic Reduction. Journal of Physical Chemistry C, 2007, 111, 14189-14197.	1.5	48
30	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7076-7082.	7.2	48
31	Active, Selective, and Durable Catalyst for Alkane Dehydrogenation Based on a Well-Designed Trimetallic Alloy. ACS Catalysis, 2020, 10, 5163-5172.	5.5	46
32	The effect of SrTiO3 substrate orientation on the surface morphology and ferroelectric properties of pulsed laser deposited NaNbO3 films. Applied Physics Letters, 2009, 95, 062906.	1.5	45
33	Development of the efficient TiO2 photocatalyst in photoassisted selective catalytic reduction of NO with NH3. Catalysis Today, 2006, 111, 266-270.	2.2	44
34	Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 83, 123-130.	10.8	42
35	Controlled Synthesis of Carbonâ€Supported Gold Clusters for Rational Catalyst Design. Chemical Record, 2016, 16, 2338-2348.	2.9	40
36	In Situ Time-Resolved Energy-Dispersive XAFS Study on Photodeposition of Rh Particles on a TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2008, 112, 8495-8498.	1.5	39

#	Article	IF	CITATIONS
37	Photo-oxidation of NH3 over various TiO2. Catalysis Today, 2007, 120, 220-225.	2.2	38
38	A structural study of Cu–In–Se compounds by x-ray absorption fine structure. Journal of Materials Research, 2011, 26, 1504-1516.	1.2	38
39	X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. Bulletin of the Chemical Society of Japan, 2019, 92, 193-204.	2.0	38
40	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H ₂ Cleavage into Protons and Electrons. Angewandte Chemie - International Edition, 2021, 60, 16994-16998.	7.2	38
41	Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. Journal of Physical Chemistry C, 2011, 115, 23653-23663.	1.5	36
42	xTunes: A new XAS processing tool for detailed and on-the-fly analysis. Radiation Physics and Chemistry, 2020, 175, 108270.	1.4	36
43	Anion photoelectron spectroscopy of free [Au ₂₅) ₁₈] ^{â^'} . Nanoscale, 2017, 9, 13409-13412.	2.8	35
44	Prominent hydrogenation catalysis of a PVP-stabilized Au ₃₄ superatom provided by doping a single Rh atom. Chemical Communications, 2018, 54, 5915-5918.	2.2	35
45	Superior Base Catalysis of Group 5 Hexametalates [M ₆ O ₁₉] ^{8–} (M =) Tj Journal of Physical Chemistry C, 2018, 122, 29398-29404.	ETQq1 1 1.5	0.784314 rg 34
46	Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. Jacs Au, 2021, 1, 501-507.	3.6	34
47	Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of <scp>d</scp> -glucose to <scp>d</scp> -sorbitol. Green Chemistry, 2021, 23, 2010-2016.	4.6	34
48	Synthesis of (Adamantylimido)vanadium(V) Dimethyl Complex Containing (2-Anilidomethyl)pyridine Ligand and Selected Reactions: Exploring the Oxidation State of the Catalytically Active Species in Ethylene Dimerization. Organometallics, 2017, 36, 530-542.	1.1	33
49	An Au ₂₅ (SR) ₁₈ Cluster with a Face-Centered Cubic Core. Journal of Physical Chemistry C, 2018, 122, 13199-13204.	1.5	33
50	XAS Analysis of Reactions of (Arylimido)vanadium(V) Dichloride Complexes Containing Anionic NHC That Contains a Weakly Coordinating B(C ₆ F ₅) ₃ Moiety (WCA-NHC) or Phenoxide Ligands with Al Alkyls: A Potential Ethylene Polymerization Catalyst with WCA-NHC Ligands. ACS Omega, 2019, 4, 18833-18845.	1.6	33
51	Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization. Catalysis Science and Technology, 2011, 1, 1340.	2.1	31
52	Photoinduced Formation of Superhydrophobic Surface on Which Contact Angle of a Water Droplet Exceeds 170° by Reversible Topographical Changes on a Diarylethene Microcrystalline Surface. Langmuir, 2012, 28, 17817-17824.	1.6	31
53	Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV–vis Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 2368-2372.	2.1	31
54	Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde. Nanoscale, 2016, 8, 11371-11374.	2.8	30

#	Article	IF	CITATIONS
55	Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis. Topics in Catalysis, 2018, 61, 136-141.	1.3	30
56	Control over Ligand-Exchange Positions of Thiolate-Protected Gold Nanoclusters Using Steric Repulsion of Protecting Ligands. Journal of the American Chemical Society, 2022, 144, 12310-12320.	6.6	30
57	Methane coupling and hydrogen evolution induced by palladium-loaded gallium oxide photocatalysts in the presence of water vapor. Journal of Catalysis, 2021, 397, 192-200.	3.1	29
58	Investigation of the Formation Process of Photodeposited Rh Nanoparticles on TiO ₂ by In Situ Time-Resolved Energy-Dispersive XAFS Analysis. Langmuir, 2010, 26, 13907-13912.	1.6	28
59	Surface Modification of PdZn Nanoparticles via Galvanic Replacement for the Selective Hydrogenation of Terminal Alkynes. ACS Applied Nano Materials, 2019, 2, 3307-3314.	2.4	28
60	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	2.2	27
61	Rayleigh Instability and Surfactant-Mediated Stabilization of Ultrathin Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 17006-17010.	1.5	27
62	Synthetic Mechanism of Perovskite-Type KNbO ₃ by Modified Solid-State Reaction Process. Chemistry of Materials, 2011, 23, 4498-4504.	3.2	26
63	Photoinduced Self-Epitaxial Crystal Growth of a Diarylethene Derivative with Antireflection Moth-Eye and Superhydrophobic Lotus Effects. Langmuir, 2013, 29, 8164-8169.	1.6	26
64	Application of group V polyoxometalate as an efficient base catalyst: a case study of decaniobate clusters. RSC Advances, 2016, 6, 16239-16242.	1.7	26
65	Synthesis and Structural Analysis of (Imido)vanadium Dichloride Complexes Containing 2-(2′-Benz-imidazolyl)pyridine Ligands: Effect of Al Cocatalyst for Efficient Ethylene (Co)polymerization. ACS Omega, 2017, 2, 8660-8673.	1.6	26
66	Kinetic study of photo-oxidation of NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 82, 67-76.	10.8	25
67	Ferroelectric and antiferroelectric properties of AgNbO3 films fabricated on (001), (110), and (111)SrTiO3 substrates by pulsed laser deposition. Applied Physics Letters, 2010, 97, .	1.5	24
68	Observation of domain structure in 001 orientated NaNbO3 films deposited on (001)SrTiO3 substrates by laser beam scanning microscopy. Applied Physics Letters, 2010, 96, 092901.	1.5	23
69	Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxideâ€Supported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)â€oxo Species on Ceria as a Key Precursor of Active Species. Advanced Synthesis and Catalysis, 2011, 353, 2837-2843.	2.1	23
70	Laser beam scanning microscope and piezoresponse force microscope studies on domain structured in 001-, 110-, and 111-oriented NaNbO3 films. Journal of Applied Physics, 2012, 112, 052007.	1.1	23
71	Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. Nanoscale, 2016, 8, 2544-2547.	2.8	23
72	In Situ Time-Resolved Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. Catalysis Letters, 2009, 131, 413-418.	1.4	22

#	Article	IF	Citations
73	Fabrication of Transparent <scp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fscp><fsc< td=""><td>2/3<!--<b-->sub>)<s< td=""><td>scp22 scp > O <</td></s<></td></fsc<></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></fscp></scp>	2/3 <b sub>) <s< td=""><td>scp22 scp > O <</td></s<>	scp 2 2 scp > O <
74	Selective Hydrogenation of Nitroaromatics by Colloidal Iridium Nanoparticles. Chemistry Letters, 2013, 42, 1023-1025.	0.7	22
75	Photoinduced cytotoxicity of a photochromic diarylethene via caspase cascade activation. Chemical Communications, 2015, 51, 10957-10960.	2.2	21
76	Lewis Base Catalytic Properties of [Nb ₁₀ O ₂₈] ^{6â^'} for CO ₂ Fixation to Epoxide: Kinetic and Theoretical Studies. Chemistry - an Asian Journal, 2017, 12, 1635-1640.	1.7	21
77	Ferroelectric Properties of (Na _{0.5} K _{0.5})NbO ₃ -Based Thin Films Deposited on Pt/(001)MgO Substrate by Pulsed Laser Deposition with NaNbO ₃ Buffer Layer. Japanese Journal of Applied Physics, 2009, 48, 09KA13.	0.8	20
78	Structural and Optical Properties of In-Free Cu ₂ ZnSn(S,Se) ₄ Solar Cell Materials. Japanese Journal of Applied Physics, 2012, 51, 10NC29.	0.8	20
79	Monodisperse Iridium Clusters Protected by Phenylacetylene: Implication for Size-Dependent Evolution of Binding Sites. Journal of Physical Chemistry C, 2017, 121, 10936-10941.	1.5	19
80	Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol. ACS Sustainable Chemistry and Engineering, 2021, 9, 6347-6354.	3.2	19
81	Variable control of the electronic states of a silver nanocluster <i>via</i> protonation/deprotonation of polyoxometalate ligands. Chemical Science, 2022, 13, 5557-5561.	3.7	19
82	Selective and Highâ€Yield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1206-1211.	1.7	18
83	Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H ₂ pressure. Organic and Biomolecular Chemistry, 2020, 18, 8827-8833.	1.5	18
84	Ni ₂ P Nanoalloy as an Airâ€Stable and Versatile Hydrogenation Catalyst in Water: Pâ€Alloying Strategy for Designing Smart Catalysts. Chemistry - A European Journal, 2021, 27, 4439-4446.	1.7	18
85	Metal oxide promoted TiO2 catalysts for photo-assisted selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 2008, 34, 487-494.	1.3	17
86	Electron Microscopic Observation of an Icosahedral Au ₁₃ Core in Au ₂₅ (SePh) ₁₈ and Reversible Isomerization between Icosahedral and Face-Centered Cubic Cores in Au ₁₄₄ (SC ₂ H ₄ Ph) ₆₀ . Journal of Physical Chemistry C, 2020, 124, 6907-6912.	1.5	17
87	Fabrication of Lead-Free (Na _{0.52} K _{0.44} Li _{0.04})(Nb _{0.84} Ta _{0.10} Sb <sub 091402.<="" 2009,="" 48,="" a="" applied="" by="" ceramics="" japanese="" journal="" method.="" modified="" of="" physics,="" reaction="" solid-state="" td=""><td>>0.06</td></sub>	>0.06)O{sub>3
88	Ferroelectric Properties of (Na _{0.5} K _{0.5})NbO ₃ â€"BaZrO ₃ 3â€"(Bi _{0.5} Li _{Films Deposited on Pt/(001)MgO Substrate by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2010, 49, 09MA06.}	ıb>0.5	·)TiQ _{3<}
89	The electrooxidation-induced structural changes of gold di-superatomic molecules: Au ₂₃ vs. Au ₂₅ . Physical Chemistry Chemical Physics, 2016, 18, 4822-4827.	1.3	16
90	Solution XAS Analysis for Exploring Active Species in Syndiospecific Styrene Polymerization and 1-Hexene Polymerization Using Half-Titanocene–MAO Catalysts: Significant Changes in the Oxidation State in the Presence of Styrene. Organometallics, 2019, 38, 4497-4507.	1.1	16

#	Article	IF	Citations
91	î ³ -Alumina-supported Pt ₁₇ cluster: controlled loading, geometrical structure, and size-specific catalytic activity for carbon monoxide and propylene oxidation. Nanoscale Advances, 2020, 2, 669-678.	2.2	16
92	Base Catalytic Activity of [Nb ₁₀ O ₂₈] ^{6–} : Effect of Countercations. Journal of Physical Chemistry C, 2020, 124, 10975-10980.	1.5	16
93	Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 11238-11246.	3.2	16
94	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
95	Selective Hydrogenation of 4-Nitrobenzaldehyde to 4-Aminobenzaldehyde by Colloidal RhCu Bimetallic Nanoparticles. Topics in Catalysis, 2014, 57, 1049-1053.	1.3	15
96	Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis. Journal of the Physical Society of Japan, 2018, 87, 061014.	0.7	14
97	Needle-like NaNbO3 Synthesis via Nb6O198â^' Cluster Using Na3NbO4 Precursor by Dissolution–Precipitation Method. Chemistry Letters, 2013, 42, 380-382.	0.7	13
98	Crystallographic and optical properties of CuInSe ₂ â€"ZnSe system. Japanese Journal of Applied Physics, 2014, 53, 05FW07.	0.8	13
99	Structural Study of Cu-Deficient Cu _{2(1-<i>x</i>)} ZnSnSe ₄ Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure. Japanese Journal of Applied Physics, 2012, 51, 10NC28.	0.8	13
100	Structural analysis of group V, VI, VII metal compounds by XAFS and DFT calculation. Journal of Physics: Conference Series, 2009, 190, 012073.	0.3	12
101	Halogen adsorbates on polymer-stabilized gold clusters: Mass spectrometric detection and effects on catalysis. Chinese Journal of Catalysis, 2016, 37, 1656-1661.	6.9	12
102	Self-activated Rh–Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution. Chemical Science, 2020, 11, 6862-6867.	3.7	12
103	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie, 2021, 133, 21510-21520.	1.6	12
104	Simple and high-yield preparation of carbon-black-supported $\hat{a}^{1}/41$ nm platinum nanoclusters and their oxygen reduction reactivity. Nanoscale, 2021, 13, 14679-14687.	2.8	12
105	Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. Jacs Au, 2022, 2, 419-427.	3.6	12
106	Fabrication of lead-free piezoelectric NaNbO ₃ ceramics at low temperature using NaNbO ₃ nanoparticles synthesized by solvothermal method. Journal of the Ceramic Society of Japan, 2013, 121, 116-119.	0.5	11
107	A gold superatom with 10 electrons in Au ₁₃ (PPh ₃) ₈ (<i>p</i> SC ₆ H ₄ CO _{2<td>o>H),⊂></td><td>3.</td>}	o>H),⊂>	3.
108	Wide band gap and pâ€ŧype conductive Cu–Nb–O films. Physica Status Solidi - Rapid Research Letters, 2011, 5, 153-155.	1.2	10

#	Article	IF	Citations
109	Photoinduced topographical changes on microcrystalline surfaces of diarylethenes. CrystEngComm, 2016, 18, 7229-7235.	1.3	10
110	Solution XAS Analysis of Various (Imido)vanadium(V) Dichloride Complexes Containing Monodentate Anionic Ancillary Donor Ligands: Effect of Aluminium Cocatalyst in Ethylene/Norbornene (Co)polymerization. Journal of the Japan Petroleum Institute, 2018, 61, 282-287.	0.4	10
111	Silyleneâ€Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem, 2021, 13, 169-173.	1.8	10
112	Effect of Ligand on the Electronic State of Gold in Ligand-Protected Gold Clusters Elucidated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 3143-3149.	1.5	10
113	A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Scientific Reports, 2021, 11, 10673.	1.6	10
114	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	2.8	10
115	Direct Air Capture of CO ₂ Using a Liquid Amine–Solid Carbamic Acid Phase-Separation System Using Diamines Bearing an Aminocyclohexyl Group. ACS Environmental Au, 2022, 2, 354-362.	3.3	10
116	Preparation of needle-like NaNbO3 by molten NaOH method. Journal of the Ceramic Society of Japan, 2010, 118, 741-744.	0.5	9
117	Photoinduced Reversible Heteroepitaxial Microcrystal Growth of a Photochromic Diarylethene on (110) Surface of SrTiO3. Crystal Growth and Design, 2012, 12, 1464-1468.	1.4	9
118	Temperature dependence of the photoinduced micro-crystalline surface topography of a diarylethene. CrystEngComm, 2013, 15, 8400.	1.3	9
119	Phase transition of ferroelectric (LixNa1â^'x)NbO3 films with 0â€‰â‰æ€‰xâ€‰â‰æ€‱0.13 by applying an e Applied Physics Letters, 2013, 102, .	electric fiel	d. ₈
120	CdTe quantum dots modified electrodes ITO-(Polycation/QDs) for carbon dioxide reduction to methanol. Applied Surface Science, 2020, 509, 145386.	3.1	8
121	Ferroelectric properties of NaNbO3-BaTiO3 thin films deposited on SrRuO3/(001)SrTiO3 substrate by pulsed laser deposition. Journal of the Ceramic Society of Japan, 2009, 117, 66-71.	0.5	7
122	Wide Band Gap and p-Type Conductive BaCuSeF Thin Films Fabricated by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC40.	0.8	7
123	Direct observation of catalytically active species in reaction solution by X-ray absorption spectroscopy (XAS). Japanese Journal of Applied Physics, 2019, 58, 100502.	0.8	7
124	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie, 2020, 132, 7142-7148.	1.6	7
125	Structureâ€"Stability Relationship of Amorphous IrO ₂ â€"Ta ₂ O ₅ Electrocatalysts on Ti Felt for Oxygen Evolution in Sulfuric Acid. Journal of Physical Chemistry C, 2022, 126, 1817-1827.	1.5	7
126	Structural Study of Cu-Deficient Cu _{2(1-x)} ZnSnSe ₄ Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure. Japanese Journal of Applied Physics, 2012, 51, 10NC28.	0.8	6

#	Article	IF	CITATIONS
127	Identification of hydrogen species on Pt/Al ₂ O ₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 116-123.	2.1	6
128	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angewandte Chemie, 2021, 133, 17131-17135.	1.6	6
129	Wide Band Gap and p-Type Conductive BaCuSeF Thin Films Fabricated by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC40.	0.8	6
130	Inter-element miscibility driven stabilization of ordered pseudo-binary alloy. Nature Communications, 2022, 13, 1047.	5.8	6
131	Fabrication of Lead-Free (Na _{0.5} K _{0.5})NbO ₃ â€"BaZrO ₃ â€"(Bi _{0.5} Li _{0.5}) Thin Films on (111)Pt/Ti/SiO ₂ /(100)Si Substrate by Pulsed Laser Deposition. Japanese Journal of Applied Physics. 2011. 50. 09NA07.).5	TiO _{3<}
132	The Effects of Charges at the N- and C-Termini of Short Peptides on Their Secondary and Self-assembled Structures. Chemistry Letters, 2012, 41, 549-551.	0.7	5
133	Formation of Mixedâ€Valence Luminescent Silver Clusters via Cationâ€Coupled Electronâ€Transfer in a Redoxâ€Active Ionic Crystal Based on a Dawsonâ€type Polyoxometalate with Closed Pores. European Journal of Inorganic Chemistry, 2021, 2021, 1531-1535.	1.0	5
134	Thermal stability of crown-motif [Au9(PPh3)8]3+ and [MAu8(PPh3)8]2+ (M = Pd, Pt) clusters: Effects of gas composition, single-atom doping, and counter anions. Journal of Chemical Physics, 2021, 155, 044307.	1.2	5
135	Elucidation of catalytic NO _{<i>x</i>} reduction mechanism in an electric field at low temperatures. Catalysis Science and Technology, 2022, 12, 4450-4455.	2.1	5
136	Fabrication of 100-Oriented (Na _{0.5} NbO ₃ â€"BaZrO ₃ â€"(Bi _{0.5} Li _{0.5} 60.50.510 Films on Si Substrate Using LaNiO ₃ Layer. Japanese Journal of Applied Physics, 2012, 51, 09LA06.).5)	TiO _{3<}
137	Structural Model of Ultrathin Gold Nanorods Based on High-Resolution Transmission Electron Microscopy: Twinned 1D Oligomers of Cuboctahedrons. Journal of Physical Chemistry C, 2017, 121, 10942-10947.	1.5	4
138	Synthesis and Structural Analysis of Four Coordinate (Arylimido)niobium(V) Dimethyl Complexes Containing Phenoxide Ligand: MAO-Free Ethylene Polymerization by the Cationic Nb(V)–Methyl Complex. Organometallics, 2020, 39, 3742-3758.	1.1	4
139	Hydrosilylation of carbonyls over electron-enriched Ni sites of intermetallic compound Ni ₃ Ga heterogeneous catalyst. Chemical Communications, 2021, 57, 4239-4242.	2.2	4
140	Synthesis and Isolation of an Anionic Bis(dipyrido-annulated) N-Heterocyclic Carbene CCC-Pincer Iridium(III) Complex by Facile Câ€"H Bond Activation. Inorganic Chemistry, 2021, 60, 9970-9976.	1.9	4
141	Base Catalysis of Sodium Salts of [Ta6â^'xNbxO19]8â^' Mixed-Oxide Clusters. Symmetry, 2021, 13, 1267.	1.1	4
142	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie, 0, , .	1.6	4
143	XAFS Study of Active Tungsten Species on WO3/TiO2 as a Catalyst for Photo-SCR. AIP Conference Proceedings, 2007, , .	0.3	3
144	Preparation of needle- and plate-like NaTaO ₃ by molten NaOH method. Journal of the Ceramic Society of Japan, 2013, 121, 109-112.	0.5	3

#	Article	IF	CITATIONS
145	CHAPTER 10. Metal Clusters in Catalysis. RSC Smart Materials, 2014, , 291-322.	0.1	3
146	Low-Temperature Synthesis of Perovskite-Type (Na,K)NbO3 through Nb6O198â^ Clusters by Dissolution†Precipitation Method. Bulletin of the Chemical Society of Japan, 2014, 87, 746-750.	2.0	2
147	Structural analysis of Cu(In,Ga)Se ₂ thin-films by depth-resolved XAFS. Japanese Journal of Applied Physics, 2019, 58, 105502.	0.8	2
148	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 660-671.	1.3	2
149	Fabrication of 100-Oriented (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3Films on Si Substrate Using LaNiO3Layer. Japanese Journal of Applied Physics, 2012, 51, 09LA06.	0.8	2
150	Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. AIP Conference Proceedings, 2007, , .	0.3	1
151	Fabrication of (K,Na)NbO <inf>3</inf> thin films on Si substrate by pulsed laser deposition. , 2011, , .		1
152	Laser scanning microscopy observation of domain switching in NaNbO $<$ inf $>$ 3 $<$ /inf $>$ epitaxial film. , 2013, , .		1
153	Selective and Highâ€Yield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1190-1190.	1.7	1
154	Autopolymerization of 2-bromo-3-methoxythiophene, analysis of reaction products and estimation of polymer structure. Polymer Journal, 2021, 53, 429-438.	1.3	1
155	Fabrication of Lead-Free (Na _{0.5} K _{0.5})NbO ₃ â€"BaZrO ₃ â€"(Bi _{0.5} Li _{Thin Films on (111)Pt/Ti/SiO₂/(100)Si Substrate by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2011, 50, 09NA07.}	0.5)TiO ₃
156	Study on domain structure of NaNbO <inf>3</inf> films by laser beam scanning microscope and piezoresponse force microscope., 2011, , .		0
157	Innentitelbild: Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21242-21242.	1.6	0