
Sebastian Bader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406400/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications. Advanced Energy Materials, 2022, 12, .	19.5	3

2 Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications (Adv. Energy) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

3	Three-phase variable reluctance energy harvesting. Energy Conversion and Management: X, 2022, 14, 100211.	1.6	1
4	Enhanced variable reluctance energy harvesting for self-powered monitoring. Applied Energy, 2022, 321, 119402.	10.1	9
5	On the Performance of the Two-Diode Model for Photovoltaic Cells Under Indoor Artificial Lighting. IEEE Access, 2021, 9, 1350-1361.	4.2	9
6	Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Sensors, 2021, 21, 1546.	3.8	8
7	Theoretical modeling and experimental verification of rotational variable reluctance energy harvesters. Energy Conversion and Management, 2021, 233, 113906.	9.2	9
8	System Implementation Trade-Offs for Low-Speed Rotational Variable Reluctance Energy Harvesters. Sensors, 2021, 21, 6317.	3.8	4
9	Design Optimization and Comparison of Cylindrical Electromagnetic Vibration Energy Harvesters. Sensors, 2021, 21, 7985.	3.8	8
10	Performance of An Electromagnetic Energy Harvester with Linear and Nonlinear Springs under Real Vibrations. Sensors, 2020, 20, 5456.	3.8	9
11	Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors, 2020, 20, 6685.	3.8	45
12	A Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels. IEEE Access, 2020, 8, 172057-172064.	4.2	8
13	Power Estimation for Indoor Light Energy Harvesting Systems. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 7513-7521.	4.7	25
14	Estimating Harvestable Energy in Time-Varying Indoor Light Conditions. , 2020, , .		3
15	Distributed Measurement of Light Conditions for Indoor Photovoltaic Applications. , 2020, , .		0
16	Suitability of Communication Technologies for Harvester-Powered IoT-Nodes. , 2019, , .		1
17	Energy-autonomous On-rotor RPM Sensor Using Variable Reluctance Energy Harvesting. , 2019, , .		2
18	One-diode photovoltaic model parameters at indoor illumination levels – A comparison. Solar Energy, 2019, 180, 707-716.	6.1	46

SEBASTIAN BADER

#	Article	IF	CITATIONS
19	Design, modeling and optimization of an m-shaped variable reluctance energy harvester for rotating applications. Energy Conversion and Management, 2019, 195, 1280-1294.	9.2	14
20	A space-coiling resonator for improved energy harvesting in fluid power systems. Sensors and Actuators A: Physical, 2019, 291, 58-67.	4.1	10
21	A Scalable, Data-driven Approach for Power Estimation of Photovoltaic Devices under Indoor Conditions. , 2019, , .		5
22	A Survey on Variable Reluctance Energy Harvesters in Low-Speed Rotating Applications. IEEE Sensors Journal, 2018, 18, 3426-3435.	4.7	18
23	Force Transmission Interfaces for Pressure Fluctuation Energy Harvesters. , 2018, , .		1
24	An Apparatus for the Performance Estimation of Pressure Fluctuation Energy Harvesters. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2705-2713.	4.7	10
25	Characterization of Indoor Light Conditions by Light Source Classification. IEEE Sensors Journal, 2017, 17, 3884-3891.	4.7	28
26	A concept for remotely reconfigurable solar energy harvesting testbeds. , 2017, , .		3
27	Deploying a 6LoWPAN, CoAP, low power, wireless sensor network. , 2016, , .		4
28	Remote image capturing with low-cost and low-power wireless camera nodes. , 2014, , .		0