Yanxing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406307/publications.pdf

Version: 2024-02-01

840776 610901 31 607 11 24 citations h-index g-index papers 31 31 31 1038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering Steam Induced Surface Oxygen Vacancy onto Ni–Fe Bimetallic Nanocomposite for CO ₂ Electroreduction. Small, 2022, 18, e2108034.	10.0	20
2	Confinement-Induced Catalytic Dissociation of Hydrogen Molecules in a Scanning Tunneling Microscope. Journal of the American Chemical Society, 2022, 144, 9618-9623.	13.7	7
3	Magnetic phase transition of monolayer chromium trihalides investigated with machine learning: toward a universal magnetic Hamiltonian. Journal of Physics Condensed Matter, 2022, 34, 395901.	1.8	1
4	A theoretical study of sulfur poisoning tolerance at the interface of Mo doped Ni/Yttria-Stabilized Zirconia. International Journal of Hydrogen Energy, 2021, 46, 21075-21081.	7.1	3
5	Role of Pr-Vacancies and O-Interstitials on the Activity and Stability of (Pr _{1â^x} Ln _x) ₂ NiO ₄ (Ln = La, Nd, Pm, Sm, Gd, Tb, Dy, and) Tj E1	Г <u>2.</u> g1 1 0.7	784314 rg <mark>B</mark>
6	Novel Bi, BiSn, Bi ₂ Sn, Bi ₃ Sn, and Bi ₄ Sn Catalysts for Efficient Electroreduction of CO ₂ to Formic Acid. Industrial & Electroreduction of CO ₂ to Formic Acid. Industrial & Electroreduction of CO ₂ to Formic Acid. Industrial & Electroreduction of CO ₂ to Formic Acid. Industrial & Electroreduction of CO ₃ to Formic Acid. Industrial & Electroreduction of CO ₄ Sn Catalysts for Efficient Electroreduction of CO ₄ Sn Catalysts for Efficient Electroreduction of CO ₅ 2 Electroreduction of CO ₅ Sn Catalysts for Efficient Electroreduction of CO ₅ Sn Catalysts for Electroreduction Electroreducti	3.7	32
7	Advantageous Configurative Heteroatoms-Doped Carbon Foams Design and Application for Ultrahigh-Powered Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 731-738.	6.7	13
8	Efficient band structure engineering and visible-light response in SnS2/GaS heterostructure by electric field and biaxial strain. Superlattices and Microstructures, 2019, 134, 106210.	3.1	2
9	Efficient band structure engineering and visible-light response in ZrS2/GaS heterobilayer by electrical field or external strains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2969-2973.	2.1	8
10	Ag monolayer doped by Pt atom on WC (0001) surface: A good catalyst for H2 dissociation with high sulfur tolerance. International Journal of Hydrogen Energy, 2019, 44, 3115-3120.	7.1	9
11	High activity of Au monolayer doped by Pt atom on WC (0001) surface towards H2 dissociation and high tolerance of sulfur poisoning. Journal of Alloys and Compounds, 2019, 775, 330-334.	5.5	10
12	Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy, 2019, 57, 176-185.	16.0	162
13	First-principles study for the enhanced sulfur tolerance of Ni($1\hat{A}1\hat{A}1$) surface alloyed with Pb. Surface Science, 2018, 670, 68-71.	1.9	6
14	High Stability and Reactivity of Single-Metal Atom Catalysts Supported on Yttria-Stabilized Zirconia: The Role of the Surface Oxygen Vacancy. Journal of Physical Chemistry C, 2018, 122, 1622-1630.	3.1	8
15	The mechanism of the high resistance to sulfur poisoning of the rhenium doped nickel/yttria-stabilized zirconia. Applied Surface Science, 2018, 447, 561-568.	6.1	8
16	The first principles study of the sulfur oxidation on Ni surface with H2O. Journal of Alloys and Compounds, 2018, 741, 1183-1187.	5.5	9
17	Enhanced sulfur resistance of Ni(1 1 1) surface alloyed with Ge: A first principles study. Surface Science, 2018, 677, 115-120.	1.9	6
18	High resistance to sulfur poisoning of Ni with copper skin under electric field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 671-678.	2.1	1

#	Article	IF	Citations
19	A possible highly active supported Ni dimer catalyst for O2 dissociation: A first-principles study. Applied Surface Science, 2017, 402, 168-174.	6.1	4
20	Efficient noble metal nanocatalysts supported on HfC(001) for O2 dissociation. AIP Advances, 2017, 7, .	1.3	6
21	Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science, 2017, 358, 206-210.	12.6	150
22	A First-Principles Study of O ₂ Dissociation on Platinum Modified Titanium Carbide: A Possible Efficient Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 21333-21342.	3.1	18
23	First principles study on the adsorption of Au dimer on metal-oxide surfaces: The implications for Au growing. Applied Surface Science, 2017, 426, 554-561.	6.1	13
24	Imaging van der Waals Interactions. Journal of Physical Chemistry Letters, 2016, 7, 5205-5211.	4.6	11
25	Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction. Journal of Chemical Physics, 2016, 144, 204703.	3.0	18
26	The sulfur poisoning of the nickel/oxygen-enriched yttria-stabilized zirconia. Journal of Power Sources, 2015, 293, 635-641.	7.8	11
27	Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals. Applied Surface Science, 2015, 357, 1785-1791.	6.1	11
28	Understanding on the carbon deposition on the Nickel/Yttrium–Stabilized Zirconia anode caused by the CO containing fuels. Journal of Power Sources, 2015, 279, 759-765.	7.8	14
29	The origin of the low efficiency of carbon removal from the Nickel/Yttrium–Stabilized Zirconia triple-phase boundary by adsorbed water. Journal of Power Sources, 2015, 279, 224-230.	7.8	4
30	Resistance to sulfur poisoning of the gold doped nickel/yttria-stabilized zirconia with interface oxygen vacancy. Journal of Power Sources, 2014, 271, 516-521.	7.8	13
31	The mechanism of sulfur poisoning on the nickel/yttrium-stabilized zirconia anode of solid oxide fuel cells: The role of the oxygen vacancy. Journal of Power Sources, 2013, 237, 128-131.	7.8	26