Ioan-Cezar Marcu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Innovative Developments of Layered Double Hydroxide-Based Hybrids and Nanocomposite Catalysts. Series on Chemistry, Energy and the Environment, 2022, , 189-362.	0.3	1
2	Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. Comptes Rendus Chimie, 2022, 25, 119-152.	0.5	0
3	Hydrodeoxygenation of benzyl alcohol on transition-metal-containing mixed oxides catalysts derived from layered double hydroxide precursors. Catalysis Today, 2021, 366, 235-244.	4.4	12
4	Ethane oxydehydrogenation over TiP2O7-supported NiO catalysts. Catalysis Today, 2021, 366, 133-140.	4.4	3
5	Unraveling mechanistic aspects of the total oxidation of methane over Mn, Ni and Cu spinel cobaltites via in situ electrical conductivity measurements. Applied Catalysis A: General, 2021, 611, 117901.	4.3	8
6	Nanocrystalline Spinel Catalysts for Volatile Organic Compounds Abatement. , 2021, , 1-58.		0
7	Insights into the electronic and redox behavior of surface-phosphated ceria catalysts in correlation with their propane oxydehydrogenation performance. Physical Chemistry Chemical Physics, 2021, 23, 5897-5907.	2.8	6
8	Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts, 2021, 11, 427.	3.5	19
9	Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials, 2021, 11, 1371.	4.1	12
10	The Influence of the Preparation Method on the Physico-Chemical Properties and Catalytic Activities of Ce-Modified LDH Structures Used as Catalysts in Condensation Reactions. Molecules, 2021, 26, 6191.	3.8	5
11	METHANE COMBUSTION OVER HIGHLY EFFECTIVE COBALTPROMOTED COPPER-CERIUM-BASED LDH-DERIVED MIXED OXIDES CATALYSTS. , 2021, , .		0
12	Ce-Containing MgAl-Layered Double Hydroxide-Graphene Oxide Hybrid Materials as Multifunctional Catalysts for Organic Transformations. Materials, 2021, 14, 7457.	2.9	9
13	Highlights on the Catalytic Properties of Polyoxometalate-Intercalated Layered Double Hydroxides: A Review. Catalysts, 2020, 10, 57.	3.5	33
14	Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications. Materials, 2020, 13, 5555.	2.9	10
15	Highly Active Transition Metal-Promoted CuCeMgAlO Mixed Oxide Catalysts Obtained from Multicationic LDH Precursors for the Total Oxidation of Methane. Catalysts, 2020, 10, 613.	3.5	6
16	Catalytic Material. , 2020, , 63-81.		0
17	Layered Double Hydroxide. , 2020, , 265-274.		0

2

IOAN-CEZAR MARCU

#	Article	IF	CITATIONS
19	CuxCeMgAlO mixed oxide catalysts derived from multicationic LDH precursors for methane total oxidation. Applied Catalysis A: General, 2019, 586, 117215.	4.3	14
20	Insights into the relationship between the catalytic oxidation performances of Ce-Pr mixed oxides and their semiconductive and redox properties. Applied Catalysis A: General, 2019, 578, 30-39.	4.3	5
21	Levulinate-intercalated LDH: A potential heterogeneous organocatalyst for the green epoxidation of α,β-unsaturated esters. Catalysis Today, 2018, 306, 154-165.	4.4	9
22	Propane oxidative dehydrogenation over VOx/SBA-15 catalysts. Catalysis Today, 2018, 306, 260-267.	4.4	37
23	Propane oxidative dehydrogenation over V-containing mixed oxides derived from decavanadate-exchanged ZnAl–layered double hydroxides prepared by a sol–gel method. Comptes Rendus Chimie, 2018, 21, 210-220.	0.5	10
24	Influence of Mn content on the catalytic properties of Cu-(Mn)-Zn-Mg-Al mixed oxides derived from LDH precursors in the total oxidation of methane. Catalysis Today, 2018, 306, 276-286.	4.4	30
25	New organic-inorganic LDH composites: Synthesis, characterization and catalytic behavior in the green epoxidation of α, β-unsaturated esters. Inorganica Chimica Acta, 2018, 475, 127-132.	2.4	5
26	EFFECT OF THE SUPPORT ON THE CATALYTIC ACTIVITY OF COPPER OXIDE IN METHANE COMBUSTION. , 2018, , .		0
27	Total oxidation of methane over supported CuO: Influence of the Mg x Al y O support. Applied Catalysis A: General, 2017, 538, 81-90.	4.3	27
28	Study of Ce–Cu mixed oxide catalysts by <i>in situ</i> electrical conductivity measurements. Physical Chemistry Chemical Physics, 2017, 19, 31929-31939.	2.8	12
29	Layered Double Hydroxides-Based Materials as Oxidation Catalysts. Advances in Chemical and Materials Engineering Book Series, 2017, , 59-121.	0.3	6
30	M-substituted (MÂ=ÂCo, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. International Journal of Hydrogen Energy, 2016, 41, 11108-11118.	7.1	41
31	The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation. Catalysis Science and Technology, 2016, 6, 6953-6964.	4.1	34
32	Photoelectrochemical properties of AFe2O4 (A=Co,Cu,Zn) ferrospinels for water photo-reduction. Journal of Electroanalytical Chemistry, 2015, 742, 47-53.	3.8	32
33	A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2015, 17, 8138-8147.	2.8	39
34	Study of the esterification reaction of acetic acid with n -butanol over supported WO 3 catalysts. Journal of Molecular Catalysis A, 2015, 396, 275-281.	4.8	29
35	Study of the electrical and catalytic properties of spinels with CuFe2â ^{~2} xMnxO4 composition (x=0, 0.4,) Tj ETQq1	1 0,7843 4.3	914 rgBT /Ov
36	Comparison of CuxZnAlO mixed oxide catalysts derived from multicationic and hybrid LDH precursors for methane total oxidation. Applied Catalysis A: General, 2014, 477, 195-204.	4.3	32

#	Article	IF	CITATIONS
37	Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M = Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2014, 16, 4962.	2.8	32
38	An in situ electrical conductivity study of LaCoFe perovskite-based catalysts in correlation with the total oxidation of methane. Applied Catalysis A: General, 2014, 485, 20-27.	4.3	29
39	Catalytic Conversion of Ethanol into Butanol over M–Mg–Al Mixed Oxide Catalysts (MÂ=ÂPd, Ag, Mn, Fe,) Tj I	ETQq1 1 0 2.6	.784314 rgt 90
40	Molybdena–vanadia supported on alumina: Effective catalysts for the esterification reaction of acetic acid with n-butanol. Journal of Molecular Catalysis A, 2013, 370, 104-110.	4.8	21
41	Enhancing Oxidative Dehydrogenation Selectivity of Ceriaâ€Based Catalysts with Phosphorus as Additive. ChemCatChem, 2013, 5, 757-765.	3.7	12
42	Total oxidation of methane over rare earth cation-containing mixed oxides derived from LDH precursors. Applied Catalysis A: General, 2013, 464-465, 20-27.	4.3	37
43	Molecular Level Insights into the Structure of Active Sites of VAIO Mixed Oxides in Propane Ammoxidation. Journal of Physical Chemistry C, 2013, 117, 22926-22938.	3.1	9
44	Study by electrical conductivity measurements of semiconductive and redox properties of ceria and phosphated ceria catalysts. Applied Catalysis B: Environmental, 2012, 128, 55-63.	20.2	10
45	Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Applied Clay Science, 2012, 61, 52-58.	5.2	98
46	Esterification of acetic acid with n-Butanol using vanadium oxides supported on Î ³ -alumina. Comptes Rendus Chimie, 2012, 15, 793-798.	0.5	15
47	Oxidative dehydrogenation of propane over cobalt-containing mixed oxides obtained from LDH precursors. Applied Catalysis A: General, 2012, 417-418, 153-162.	4.3	36
48	Study of the Catalytic Activity–Semiconductive Properties Relationship For BaTiO3 and PbTiO3 Perovskites, Catalysts for Methane Combustion. Catalysis Letters, 2011, 141, 445-451.	2.6	17
49	Transition metal-containing mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation. Applied Catalysis A: General, 2011, 395, 78-86.	4.3	66
50	Esterification of Acetic Acid with n-Butanol Using Molybdenum Oxides Supported on γ-Alumina. Catalysis Letters, 2010, 140, 32-37.	2.6	17
51	Phosphated ceria, selective catalysts for oxidative dehydrogenation of isobutane. Comptes Rendus Chimie, 2010, 13, 365-371.	0.5	13
52	Oxidative dehydrogenation of isobutane over supported V-Mo mixed oxides. Journal of the Serbian Chemical Society, 2010, 75, 1115-1124.	0.8	7
53	Propane Oxidative Dehydrogenation Over Ln–Mg–Al–O Catalysts (LnÂ=ÂCe, Sm, Dy, Yb). Catalysis Letters, 2009, 131, 250-257	2.6	15
54	Semiconductive properties of Mo–V–M–O (MÂ=ÂZn, Ni, Cu, Sb) oxides, catalysts for isobutane oxidehydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 135.	1.7	0

IOAN-CEZAR MARCU

#	Article	IF	CITATIONS
55	Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catalysis Today, 2009, 147, 231-238.	4.4	117
56	New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Applied Catalysis A: General, 2009, 363, 135-142.	4.3	84
57	BaTiO3 and PbTiO3 perovskite as catalysts for methane combustion. Comptes Rendus Chimie, 2009, 12, 1072-1078.	0.5	19
58	Co and Ni ferrospinels as catalysts for propane total oxidation. Catalysis Communications, 2009, 10, 1651-1655.	3.3	40
59	Mechanism of n-butane oxidative dehydrogenation over tetravalent pyrophosphates catalysts. Applied Catalysis A: General, 2008, 334, 207-216.	4.3	21
60	Oxidative dehydrogenation of n-butane over titanium pyrophosphate catalysts in the presence of carbon dioxide. Catalysis Communications, 2008, 9, 2403-2406.	3.3	30
61	Selective oxidation of isobutane on V-Mo-O mixed oxide catalysts. Journal of the Serbian Chemical Society, 2008, 73, 55-64.	0.8	3
62	Study by electrical conductivity measurement of redox properties of vanadium antimonate and mixed vanadium and iron antimonate. Journal of Molecular Catalysis A, 2005, 226, 111-117.	4.8	18
63	Oxidative dehydrogenation of isobutane over titanium pyrophosphate catalyst. Journal of the Serbian Chemical Society, 2005, 70, 791-798.	0.8	12
64	Study of sulfur dioxide adsorption on Y zeolite. Journal of the Serbian Chemical Society, 2004, 69, 563-569.	0.8	48
65	Effects of the method of preparing titanium pyrophosphate catalyst on the structure and catalytic activity in oxidative dehydrogenation of n-butane. Journal of Molecular Catalysis A, 2003, 203, 241-250.	4.8	46
66	TiP2O7 catalysts characterised by in situ Raman spectroscopy during the oxidative dehydrogenation of n-butane. Physical Chemistry Chemical Physics, 2003, 5, 4384.	2.8	25
67	Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Applied Catalysis A: General, 2002, 227, 309-320.	4.3	44
68	Title is missing!. Catalysis Letters, 2002, 78, 273-279.	2.6	43