Ioan-Cezar Marcu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catalysis Today, 2009, 147, 231-238.	4.4	117
2	Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Applied Clay Science, 2012, 61, 52-58.	5.2	98
3	Catalytic Conversion of Ethanol into Butanol over M–Mg–Al Mixed Oxide Catalysts (MÂ=ÂPd, Ag, Mn, Fe,)	Tj ETQq1 1 2.6	. 0.784314 rg 90
4	New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Applied Catalysis A: General, 2009, 363, 135-142.	4.3	84
5	Transition metal-containing mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation. Applied Catalysis A: General, 2011, 395, 78-86.	4.3	66
6	Study of sulfur dioxide adsorption on Y zeolite. Journal of the Serbian Chemical Society, 2004, 69, 563-569.	0.8	48
7	Effects of the method of preparing titanium pyrophosphate catalyst on the structure and catalytic activity in oxidative dehydrogenation of n-butane. Journal of Molecular Catalysis A, 2003, 203, 241-250.	4.8	46
8	Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Applied Catalysis A: General, 2002, 227, 309-320.	4.3	44
9	Title is missing!. Catalysis Letters, 2002, 78, 273-279.	2.6	43
10	M-substituted (MÂ=ÂCo, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. International Journal of Hydrogen Energy, 2016, 41, 11108-11118.	7.1	41
11	Co and Ni ferrospinels as catalysts for propane total oxidation. Catalysis Communications, 2009, 10, 1651-1655.	3.3	40
12	A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2015, 17, 8138-8147.	2.8	39
13	Total oxidation of methane over rare earth cation-containing mixed oxides derived from LDH precursors. Applied Catalysis A: General, 2013, 464-465, 20-27.	4.3	37
14	Propane oxidative dehydrogenation over VOx/SBA-15 catalysts. Catalysis Today, 2018, 306, 260-267.	4.4	37
15	Oxidative dehydrogenation of propane over cobalt-containing mixed oxides obtained from LDH precursors. Applied Catalysis A: General, 2012, 417-418, 153-162.	4.3	36
16	The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation. Catalysis Science and Technology, 2016, 6, 6953-6964.	4.1	34
17	Highlights on the Catalytic Properties of Polyoxometalate-Intercalated Layered Double Hydroxides: A Review. Catalysts, 2020, 10, 57.	3.5	33
18	Comparison of CuxZnAlO mixed oxide catalysts derived from multicationic and hybrid LDH precursors for methane total oxidation. Applied Catalysis A: General, 2014, 477, 195-204.	4.3	32

IOAN-CEZAR MARCU

#	Article	IF	CITATIONS
19	Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M = Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2014, 16, 4962.	2.8	32
20	Photoelectrochemical properties of AFe2O4 (A=Co,Cu,Zn) ferrospinels for water photo-reduction. Journal of Electroanalytical Chemistry, 2015, 742, 47-53.	3.8	32
21	Oxidative dehydrogenation of n-butane over titanium pyrophosphate catalysts in the presence of carbon dioxide. Catalysis Communications, 2008, 9, 2403-2406.	3.3	30
22	Influence of Mn content on the catalytic properties of Cu-(Mn)-Zn-Mg-Al mixed oxides derived from LDH precursors in the total oxidation of methane. Catalysis Today, 2018, 306, 276-286.	4.4	30
23	An in situ electrical conductivity study of LaCoFe perovskite-based catalysts in correlation with the total oxidation of methane. Applied Catalysis A: General, 2014, 485, 20-27.	4.3	29
24	Study of the esterification reaction of acetic acid with n -butanol over supported WO 3 catalysts. Journal of Molecular Catalysis A, 2015, 396, 275-281.	4.8	29
25	Total oxidation of methane over supported CuO: Influence of the Mg x Al y O support. Applied Catalysis A: General, 2017, 538, 81-90.	4.3	27
26	TiP2O7 catalysts characterised by in situ Raman spectroscopy during the oxidative dehydrogenation of n-butane. Physical Chemistry Chemical Physics, 2003, 5, 4384.	2.8	25
27	Mechanism of n-butane oxidative dehydrogenation over tetravalent pyrophosphates catalysts. Applied Catalysis A: General, 2008, 334, 207-216.	4.3	21
28	Molybdena–vanadia supported on alumina: Effective catalysts for the esterification reaction of acetic acid with n-butanol. Journal of Molecular Catalysis A, 2013, 370, 104-110.	4.8	21
29	BaTiO3 and PbTiO3 perovskite as catalysts for methane combustion. Comptes Rendus Chimie, 2009, 12, 1072-1078.	0.5	19
30	Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts, 2021, 11, 427.	3.5	19
31	Study by electrical conductivity measurement of redox properties of vanadium antimonate and mixed vanadium and iron antimonate. Journal of Molecular Catalysis A, 2005, 226, 111-117.	4.8	18
32	Study of the electrical and catalytic properties of spinels with CuFe2â^'xMnxO4 composition (x=0, 0.4,) Tj ETQqO	0.0.jgBT 4.3	/Oygrlock 10
33	Esterification of Acetic Acid with n-Butanol Using Molybdenum Oxides Supported on Î ³ -Alumina. Catalysis Letters, 2010, 140, 32-37.	2.6	17
34	Study of the Catalytic Activity–Semiconductive Properties Relationship For BaTiO3 and PbTiO3 Perovskites, Catalysts for Methane Combustion. Catalysis Letters, 2011, 141, 445-451.	2.6	17
35	Propane Oxidative Dehydrogenation Over Ln–Mg–Al–O Catalysts (LnÂ=ÂCe, Sm, Dy, Yb). Catalysis Letters, 2009, 131, 250-257	2.6	15
36	Esterification of acetic acid with n-Butanol using vanadium oxides supported on Î ³ -alumina. Comptes	0.5	15

Rendus Chimie, 2012, 15, 793-798.

IOAN-CEZAR MARCU

#	Article	IF	CITATIONS
37	CuxCeMgAlO mixed oxide catalysts derived from multicationic LDH precursors for methane total oxidation. Applied Catalysis A: General, 2019, 586, 117215.	4.3	14
38	Phosphated ceria, selective catalysts for oxidative dehydrogenation of isobutane. Comptes Rendus Chimie, 2010, 13, 365-371.	0.5	13
39	Enhancing Oxidative Dehydrogenation Selectivity of Ceriaâ€Based Catalysts with Phosphorus as Additive. ChemCatChem, 2013, 5, 757-765.	3.7	12
40	Study of Ce–Cu mixed oxide catalysts by <i>in situ</i> electrical conductivity measurements. Physical Chemistry Chemical Physics, 2017, 19, 31929-31939.	2.8	12
41	Hydrodeoxygenation of benzyl alcohol on transition-metal-containing mixed oxides catalysts derived from layered double hydroxide precursors. Catalysis Today, 2021, 366, 235-244.	4.4	12
42	Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials, 2021, 11, 1371.	4.1	12
43	Oxidative dehydrogenation of isobutane over titanium pyrophosphate catalyst. Journal of the Serbian Chemical Society, 2005, 70, 791-798.	0.8	12
44	Study by electrical conductivity measurements of semiconductive and redox properties of ceria and phosphated ceria catalysts. Applied Catalysis B: Environmental, 2012, 128, 55-63.	20.2	10
45	Propane oxidative dehydrogenation over V-containing mixed oxides derived from decavanadate-exchanged ZnAl–layered double hydroxides prepared by a sol–gel method. Comptes Rendus Chimie, 2018, 21, 210-220.	0.5	10
46	Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications. Materials, 2020, 13, 5555.	2.9	10
47	Molecular Level Insights into the Structure of Active Sites of VAIO Mixed Oxides in Propane Ammoxidation. Journal of Physical Chemistry C, 2013, 117, 22926-22938.	3.1	9
48	Levulinate-intercalated LDH: A potential heterogeneous organocatalyst for the green epoxidation of α,β-unsaturated esters. Catalysis Today, 2018, 306, 154-165.	4.4	9
49	Ce-Containing MgAl-Layered Double Hydroxide-Graphene Oxide Hybrid Materials as Multifunctional Catalysts for Organic Transformations. Materials, 2021, 14, 7457.	2.9	9
50	Unraveling mechanistic aspects of the total oxidation of methane over Mn, Ni and Cu spinel cobaltites via in situ electrical conductivity measurements. Applied Catalysis A: General, 2021, 611, 117901.	4.3	8
51	Oxidative dehydrogenation of isobutane over supported V-Mo mixed oxides. Journal of the Serbian Chemical Society, 2010, 75, 1115-1124.	0.8	7
52	Highly Active Transition Metal-Promoted CuCeMgAlO Mixed Oxide Catalysts Obtained from Multicationic LDH Precursors for the Total Oxidation of Methane. Catalysts, 2020, 10, 613.	3.5	6
53	Insights into the electronic and redox behavior of surface-phosphated ceria catalysts in correlation with their propane oxydehydrogenation performance. Physical Chemistry Chemical Physics, 2021, 23, 5897-5907.	2.8	6
54	Layered Double Hydroxides-Based Materials as Oxidation Catalysts. Advances in Chemical and Materials Engineering Book Series, 2017, , 59-121.	0.3	6

IOAN-CEZAR MARCU

#	Article	IF	CITATIONS
55	New organic-inorganic LDH composites: Synthesis, characterization and catalytic behavior in the green epoxidation of \hat{l}_{\pm} , \hat{l}^2 -unsaturated esters. Inorganica Chimica Acta, 2018, 475, 127-132.	2.4	5
56	Insights into the relationship between the catalytic oxidation performances of Ce-Pr mixed oxides and their semiconductive and redox properties. Applied Catalysis A: General, 2019, 578, 30-39.	4.3	5
57	The Influence of the Preparation Method on the Physico-Chemical Properties and Catalytic Activities of Ce-Modified LDH Structures Used as Catalysts in Condensation Reactions. Molecules, 2021, 26, 6191.	3.8	5
58	Selective oxidation of isobutane on V-Mo-O mixed oxide catalysts. Journal of the Serbian Chemical Society, 2008, 73, 55-64.	0.8	3
59	Ethane oxydehydrogenation over TiP2O7-supported NiO catalysts. Catalysis Today, 2021, 366, 133-140.	4.4	3
60	Recent Innovative Developments of Layered Double Hydroxide-Based Hybrids and Nanocomposite Catalysts. Series on Chemistry, Energy and the Environment, 2022, , 189-362.	0.3	1
61	Semiconductive properties of Mo–V–M–O (MÂ=ÂZn, Ni, Cu, Sb) oxides, catalysts for isobutane oxidehydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 135.	1.7	0
62	Nanocrystalline Spinel Catalysts for Volatile Organic Compounds Abatement. , 2021, , 1-58.		0
63	METHANE COMBUSTION OVER HIGHLY EFFECTIVE COBALTPROMOTED COPPER-CERIUM-BASED LDH-DERIVED MIXED OXIDES CATALYSTS. , 2021, , .		0
64	EFFECT OF THE SUPPORT ON THE CATALYTIC ACTIVITY OF COPPER OXIDE IN METHANE COMBUSTION. , 2018, , .		0
65	Catalytic Material. , 2020, , 63-81.		0
66	Layered Double Hydroxide. , 2020, , 265-274.		0
67	Zeolite. , 2020, , 515-530.		0
68	Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. Comptes Rendus Chimie, 2022, 25, 119-152.	0.5	0