
Mikhail Shekhirev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405962/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 2021, 120, 100757.	32.8	288
2	Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. Journal of Chemical Health and Safety, 2021, 28, 326-338.	2.1	102
3	Highly Selective Gas Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 7392-7402.	8.0	59
4	In Situ Atomic Force Microscopy of the Reconfiguration of Onâ€Surface Selfâ€Assembled DNAâ€Nanoparticle Superlattices. Advanced Functional Materials, 2019, 29, 1806924.	14.9	12
5	Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes. Journal of Physics Condensed Matter, 2018, 30, 18LT02.	1.8	13
6	Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. ACS Nano, 2018, 12, 8662-8669.	14.6	49
7	Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 693-700.	8.0	22
8	Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nature Communications, 2017, 8, 820.	12.8	113
9	Synthesis of Cesium Lead Halide Perovskite Quantum Dots. Journal of Chemical Education, 2017, 94, 1150-1156.	2.3	51
10	Aggregation of atomically precise graphene nanoribbons. RSC Advances, 2017, 7, 54491-54499.	3.6	7
11	Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. Nanoscale, 2017, 9, 18835-18844.	5.6	21
12	Solution Synthesis of Atomically Precise Graphene Nanoribbons. ChemistrySelect, 2017, 2, .	1.5	3
13	Graphene substrate for inducing neurite outgrowth. Biochemical and Biophysical Research Communications, 2015, 460, 267-273.	2.1	57
14	Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Nano Letters, 2015, 15, 5770-5777.	9.1	80
15	Oxidative peeling of carbon black nanoparticles. RSC Advances, 2015, 5, 92539-92544.	3.6	4
16	Few-layered titanium trisulfide (TiS ₃) field-effect transistors. Nanoscale, 2015, 7, 12291-12296.	5.6	122
17	Large-scale solution synthesis of narrow graphene nanoribbons. Nature Communications, 2014, 5, 3189.	12.8	271
18	Wetting and spreading of molten NaCl and CaCl2 over polycrystalline hydroxyapatite. Mendeleev Communications, 2014, 24, 12-14.	1.6	4

MIKHAIL SHEKHIREV

#	Article	IF	CITATIONS
19	Bulk properties of solution-synthesized chevron-like graphene nanoribbons. Faraday Discussions, 2014, 173, 105-13.	3.2	21
20	Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chemical Communications, 2014, 50, 4172-4174.	4.1	136
21	Resorbable Calcium Phosphates Based Ceramics. Powder Metallurgy and Metal Ceramics, 2013, 52, 357-363.	0.8	13
22	Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics. Glass and Ceramics (English Translation of Steklo I Keramika), 2011, 68, 28-32.	0.6	26
23	Densification additives for hydroxyapatite ceramics. Journal of the European Ceramic Society, 2009, 29, 1925-1932.	5.7	28
24	Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO43â^']=1 for bioresorbable ceramics. Open Chemistry, 2009, 7, 184-191.	1.9	9
25	Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations. Inorganic Materials, 2007, 43, 901-909.	0.8	25
26	Disperse systems in calcium hydroxyapatite ceramics technology. Glass and Ceramics (English) Tj ETQq0 0 0 rgBT	Qverlock	2 10 Tf 50 46

27	Composite ceramic containing a bioresorbable phase. Glass and Ceramics (English Translation of) Tj ETQq1 1 0.7	84314 rgB 0.6	T /Overlock
28	Ceramics based on calcium hydroxyapatite synthesized in the presence of PVA. Glass and Ceramics (English Translation of Steklo I Keramika), 2007, 64, 408-412.	0.6	3