Xinghang Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6405833/xinghang-zhang-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

322 20,124 60 133 g-index

papers 22,570 6.4 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
322	Effects of incubation on microstructure gradient in flash-sintered TiO2. <i>Scripta Materialia</i> , 2022 , 207, 114270	5.6	O
321	ZnO-AuCu Alloy and ZnO-AuAl Alloy Vertically Aligned Nanocomposites for Low-Loss Plasmonic Metamaterials <i>Molecules</i> , 2022 , 27,	4.8	1
320	Deformation mechanism in nanolaminate FeCrAl alloys by in situ micromechanical strain rate jump tests at elevated temperatures. <i>Scripta Materialia</i> , 2022 , 215, 114698	5.6	2
319	Conversion of stacking fault tetrahedra to bubbles in dual (Kr, He)-beam irradiated copper. <i>Computational Materials Science</i> , 2022 , 210, 111437	3.2	О
318	Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling. <i>Materials Today</i> , 2021 ,	21.8	2
317	Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy. <i>Acta Materialia</i> , 2021 , 117404	8.4	6
316	Field-assisted growth of one-dimensional ZnO nanostructures with high defect density. <i>Nanotechnology</i> , 2021 , 32, 095603	3.4	3
315	Recent trends on studies of nanostructured metals. MRS Bulletin, 2021, 46, 217-224	3.2	2
314	Thermal stability of immiscible Cu-Ag/Fe triphase multilayers with triple junctions. <i>Acta Materialia</i> , 2021 , 208, 116679	8.4	6
313	Flash sintering of additively manufactured 3YSZ gears. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 3828-3832	3.8	3
312	Heavy ion irradiation response of an additively manufactured 316LN stainless steel. <i>Journal of Nuclear Materials</i> , 2021 , 546, 152745	3.3	6
311	Evaluation of the interface stability of Al/AlN multilayered composites under thermal stress. <i>Surface and Coatings Technology</i> , 2021 , 414, 127117	4.4	0
310	Ultra-high heating rate effects on the sintering of ceramic nanoparticles: an in situ TEM study. <i>Materials Research Letters</i> , 2021 , 9, 373-381	7.4	2
309	High-strength nanocrystalline intermetallics with room temperature deformability enabled by nanometer thick grain boundaries. <i>Science Advances</i> , 2021 , 7,	14.3	2
308	Design of 3D OxideMetal Hybrid Metamaterial for Tailorable LightMatter Interactions in Visible and Near-Infrared Region. <i>Advanced Optical Materials</i> , 2021 , 9, 2001154	8.1	7
307	Tailoring the formation of twins in Al by introducing epitaxial layer interfaces. <i>Scripta Materialia</i> , 2021 , 192, 1-6	5.6	3
306	High-strength and tunable plasticity in sputtered Al © r alloys with multistage phase transformations. <i>International Journal of Plasticity</i> , 2021 , 137, 102915	7.6	4

(2021-2021)

305	Ultra-high strength and plasticity mediated by partial dislocations and defect networks: Part II: Layer thickness effect. <i>Acta Materialia</i> , 2021 , 204, 116494	8.4	2
304	Microstructural evolution of nanotwinned Al-Zr alloy with significant 9R phase. <i>Materials Research Letters</i> , 2021 , 9, 91-98	7.4	5
303	The influence of stacking faults on mechanical behavior of advanced materials. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140696	5.3	5
302	Nitride-Oxide-Metal Heterostructure with Self-Assembled Core-Shell Nanopillar Arrays: Effect of Ordering on Magneto-Optical Properties. <i>Small</i> , 2021 , 17, e2007222	11	6
301	Self-Assembled BaTiO-AuAg Low-Loss Hybrid Plasmonic Metamaterials with an Ordered "Nano-Domino-like" Microstructure. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 5390-5398	9.5	3
300	Physics Knowledge Discovery via Neural Differential Equation Embedding. <i>Lecture Notes in Computer Science</i> , 2021 , 118-134	0.9	O
299	Deposition pressure-induced microstructure control and plasmonic property tuning in hybrid ZnOAgxAu1a thin films. <i>Nanoscale Advances</i> , 2021 , 3, 2870-2878	5.1	3
298	First-principles calculations for understanding microstructures and mechanical properties of co-sputtered Al alloys. <i>Nanoscale</i> , 2021 , 13, 14987-15001	7.7	3
297	Defects in flash-sintered ceramics and their effects on mechanical properties. <i>MRS Bulletin</i> , 2021 , 46, 44-51	3.2	9
296	Thermal Stability of Nanocrystalline Gradient Inconel 718 Alloy. <i>Crystals</i> , 2021 , 11, 53	2.3	0
295	Characterization of precipitation in gradient Inconel 718 superalloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 804, 140718	5.3	7
294	Antidelaminating, Thermally Stable, and Cost-Effective Flexible Kapton Platforms for Nitrate Sensors, Mercury Aptasensors, Protein Sensors, and p-Type Organic Thin-Film Transistors. <i>ACS Applied Materials & Diterfaces</i> , 2021 , 13, 11369-11384	9.5	1
293	High Strength and Low Coercivity of Cobalt with Three-Dimensional Nanoscale Stacking Faults. <i>Nano Letters</i> , 2021 , 21, 6480-6486	11.5	2
292	Ultra-fine-grained and gradient FeCrAl alloys with outstanding work hardening capability. <i>Acta Materialia</i> , 2021 , 215, 117049	8.4	5
291	Ordered hybrid metamaterial of La0.7Sr0.3MnO3Au vertically aligned nanocomposites achieved on templated SrTiO3 substrate. <i>Materials Today Nano</i> , 2021 , 15, 100121	9.7	1
290	Strong Interfacial Coupling of Tunable Ni-NiO Nanocomposite Thin Films Formed by Self-Decomposition. <i>ACS Applied Materials & Englisher Self-Decomposition</i> (13, 39730-39737)	9.5	2
289	Enhanced defect annihilation capability of the graphene/copper interface: An in situ study. <i>Scripta Materialia</i> , 2021 , 203, 114001	5.6	5
288	Microstructure and defect gradients in DC and AC flash sintered ZnO. <i>Ceramics International</i> , 2021 , 47, 28596-28602	5.1	О

287	Temperature effect on mechanical response of flash-sintered ZnO by in-situ compression tests. <i>Acta Materialia</i> , 2020 , 200, 699-709	8.4	10
286	Strong and plastic metallic composites with nanolayered architectures. Acta Materialia, 2020, 195, 240-	28.4	13
285	Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers. <i>Applied Surface Science</i> , 2020 , 527, 146776	6.7	9
284	Plastic anisotropy and tension-compression asymmetry in nanotwinned Al E e alloys: An in-situ micromechanical investigation. <i>International Journal of Plasticity</i> , 2020 , 132, 102760	7.6	12
283	He ion irradiation response of a gradient T91 steel. Acta Materialia, 2020, 196, 175-190	8.4	10
282	3D Hybrid Plasmonic Framework with Au Nanopillars Embedded in Nitride Multilayers Integrated on Si. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000493	4.6	11
281	Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries. <i>Scripta Materialia</i> , 2020 , 182, 21-26	5.6	11
280	Thermal stability and deformability of annealed nanotwinned Al/Ti multilayers. <i>Scripta Materialia</i> , 2020 , 186, 219-224	5.6	8
279	Extrinsic size dependent plastic deformability of ZnS micropillars. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020 , 792, 139706	5.3	1
278	Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms. <i>Small</i> , 2020 , 16, e1906459	11	8
277	Strain-Driven In-plane Ordering in Vertically Aligned ZnO-Au Nanocomposites with Highly Correlated Metamaterial Properties. <i>ACS Omega</i> , 2020 , 5, 2234-2241	3.9	23
276	Thermally Stable Au B aTiO3 Nanoscale Hybrid Metamaterial for High-Temperature Plasmonic Applications. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1431-1437	5.6	9
275	Microstructure and tensile behavior of nanostructured gradient TWIP steel. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 785, 139346	5.3	7
274	Vertically Aligned AgAu Alloyed Nanopillars Embedded in ZnO as Nanoengineered Low-Loss Hybrid Plasmonic Metamaterials. <i>Nano Letters</i> , 2020 , 20, 3778-3785	11.5	13
273	Role of Interlayer in 3D Vertically Aligned Nanocomposite Frameworks with Tunable Magnetotransport Properties. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901990	4.6	6
272	Recent Studies on the Microstructural Response of Nanotwinned Metals to In Situ Heavy Ion Irradiation. <i>Jom</i> , 2020 , 72, 160-169	2.1	1
271	Hierarchical nanotwins in single-crystal-like nickel with high strength and corrosion resistance produced via a hybrid technique. <i>Nanoscale</i> , 2020 , 12, 1356-1365	7.7	15
270	Enhancing electrochemical performance of thin film lithium ion battery via introducing tilted metal nanopillars as effective current collectors. <i>Nano Energy</i> , 2020 , 69, 104381	17.1	13

(2019-2020)

269	Tunable Optical Properties in Self-Assembled Oxide-Metal Hybrid Thin Films via Au-Phase Geometry Control: From Nanopillars to Nanodisks. <i>Advanced Optical Materials</i> , 2020 , 8, 1901359	8.1	16	
268	Ultra-high strength and plasticity mediated by partial dislocations and defect networks: Part I: Texture effect. <i>Acta Materialia</i> , 2020 , 185, 181-192	8.4	15	
267	3D Hybrid Trilayer Heterostructure: Tunable Au Nanorods and Optical Properties. <i>ACS Applied Materials & ACS Applied</i> (12, 45015-45022)	9.5	3	
266	In-situ studies on the mechanical properties of He ion irradiated nanotwinned Ag. <i>Journal of Nuclear Materials</i> , 2020 , 540, 152392	3.3	5	
265	Metal-Free Oxide-Nitride Heterostructure as a Tunable Hyperbolic Metamaterial Platform. <i>Nano Letters</i> , 2020 , 20, 6614-6622	11.5	17	
264	Recent Studies on Void Shrinkage in Metallic Materials Subjected to In Situ Heavy Ion Irradiations. <i>Jom</i> , 2020 , 72, 4008-4016	2.1	2	
263	Coupled solute effects enable anomalous high-temperature strength and stability in nanotwinned Al alloys. <i>Acta Materialia</i> , 2020 , 200, 378-388	8.4	8	
262	Irradiation induced void spheroidization, shrinkage and migration in Cu at elevated temperatures: An in situ study. <i>Acta Materialia</i> , 2020 , 201, 504-516	8.4	3	
261	Thickness effect of graphene film on optimizing the interface and mechanical properties of Cu/Ni multilayer composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 798, 140111	5.3	6	
2 60	Design of super-strong and thermally stable nanotwinned Al alloys solute synergy. <i>Nanoscale</i> , 2020 , 12, 20491-20505	7.7	5	
259	Bidirectional tuning of phase transition properties in Pt : VO nanocomposite thin films. <i>Nanoscale</i> , 2020 , 12, 17886-17894	7.7	3	
258	High strength, deformable nanotwinned Alto alloys. <i>Materials Research Letters</i> , 2019 , 7, 33-39	7.4	22	
257	Nanoscale stacking fault-assisted room temperature plasticity in flash-sintered TiO. <i>Science Advances</i> , 2019 , 5, eaaw5519	14.3	35	
256	Hybrid plasmonic AulliN vertically aligned nanocomposites: a nanoscale platform towards tunable optical sensing. <i>Nanoscale Advances</i> , 2019 , 1, 1045-1054	5.1	28	
255	Strain and property tuning of the 3D framed epitaxial nanocomposite thin films via interlayer thickness variation. <i>Journal of Applied Physics</i> , 2019 , 125, 082530	2.5	13	
254	9R phase enabled superior radiation stability of nanotwinned Cu alloys via in situ radiation at elevated temperature. <i>Acta Materialia</i> , 2019 , 167, 248-256	8.4	10	
253	Strategies to tailor serrated flows in metallic glasses. <i>Journal of Materials Research</i> , 2019 , 34, 1595-1607	72.5	5	
252	Strain-driven nanodumbbell structure and enhanced physical properties in hybrid vertically aligned nanocomposite thin films. <i>Applied Materials Today</i> , 2019 , 16, 204-212	6.6	17	

251	Size dependent strengthening in high strength nanotwinned Al/Ti multilayers. <i>Acta Materialia</i> , 2019 , 175, 466-476	8.4	26
250	Self-assembled two-dimensional layered oxide supercells with modulated layer stacking and tunable physical properties. <i>Materials Today Nano</i> , 2019 , 6, 100037	9.7	10
249	Comparison of temperature dependent deformation mechanisms of 8YSZ thermal barrier coatings prepared by air-plasma-spray and D-gun thermal spray: An in situ study. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 3120-3128	6	11
248	Response of solidification cellular structures in additively manufactured 316 stainless steel to heavy ion irradiation: an in situ study. <i>Materials Research Letters</i> , 2019 , 7, 290-297	7.4	18
247	Tailoring the strength and ductility of T91 steel by partial tempering treatment. <i>Acta Materialia</i> , 2019 , 169, 209-224	8.4	29
246	An in situ study on Kr ionfradiated crystalline Cu/amorphous-CuNb nanolaminates. <i>Journal of Materials Research</i> , 2019 , 34, 2218-2228	2.5	9
245	Radiation induced nanovoid shrinkage in Cu at room temperature: An in situ study. <i>Scripta Materialia</i> , 2019 , 166, 112-116	5.6	5
244	Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade 91 steel processed by equal channel angular extrusion. <i>International Journal of Pressure Vessels and Piping</i> , 2019 , 172, 212-219	2.4	17
243	Helium Tribology of Inconel 617 at Elevated Temperatures up to 950°C: Parametric Study. <i>Nuclear Science and Engineering</i> , 2019 , 193, 998-1012	1.2	12
242	Study of deformation mechanisms in flash-sintered yttria-stabilized zirconia by in-situ micromechanical testing at elevated temperatures. <i>Materials Research Letters</i> , 2019 , 7, 194-202	7.4	12
241	Phase transformation induced plasticity in high-strength hexagonal close packed Co with stacking faults. <i>Scripta Materialia</i> , 2019 , 173, 32-36	5.6	15
240	Interface Effects on He Ion Irradiation in Nanostructured Materials. <i>Materials</i> , 2019 , 12,	3.5	3
239	Helium irradiation induced ultra-high strength nanotwinned Cu with nanovoids. <i>Acta Materialia</i> , 2019 , 177, 107-120	8.4	18
238	Staged microstructural study of flash sintered titania. <i>Materialia</i> , 2019 , 8, 100451	3.2	6
237	Dual Beam In Situ Radiation Studies of Nanocrystalline Cu. <i>Materials</i> , 2019 , 12,	3.5	7
236	Thick grain boundary induced strengthening in nanocrystalline Ni alloy. <i>Nanoscale</i> , 2019 , 11, 23449-234.	5 / 8.7	10
235	Self-Assembled Ordered Three-Phase Au-BaTiO -ZnO Vertically Aligned Nanocomposites Achieved by a Templating Method. <i>Advanced Materials</i> , 2019 , 31, e1806529	24	42
234	The effect of coherent interface on strain-rate sensitivity of highly textured Cu/Ni and Cu/V multilayers. <i>Scripta Materialia</i> , 2019 , 162, 33-37	5.6	18

(2018-2019)

233	High temperature thermal and mechanical stability of high-strength nanotwinned Al alloys. <i>Acta Materialia</i> , 2019 , 165, 142-152	8.4	25
232	Comparison of the grain growth behavior and defect structures of flash sintered ZnO with and without controlled current ramp. <i>Scripta Materialia</i> , 2019 , 162, 251-255	5.6	29
231	Self-Assembled Aglīn Hybrid Plasmonic Metamaterial: Tailorable Tilted Nanopillar and Optical Properties. <i>Advanced Optical Materials</i> , 2019 , 7, 1801180	8.1	26
230	Key microstructural characteristics in flash sintered 3YSZ critical for enhanced sintering process. <i>Ceramics International</i> , 2019 , 45, 1251-1257	5.1	20
229	Tailoring strength and plasticity of Ag/Nb nanolaminates via intrinsic microstructure and extrinsic dimension. <i>International Journal of Plasticity</i> , 2019 , 113, 145-157	7.6	23
228	In situ study on surface roughening in radiation-resistant Ag nanowires. <i>Nanotechnology</i> , 2018 , 29, 215	76,84	13
227	Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy. <i>Acta Materialia</i> , 2018 , 151, 395-405	8.4	20
226	Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. <i>Materials Horizons</i> , 2018 , 5, 536-544	14.4	44
225	Mechanical behavior of structurally gradient nickel alloy. Acta Materialia, 2018, 149, 57-67	8.4	44
224	Microstructure and mechanical behavior of nanotwinned AlTi alloys with 9R phase. <i>Scripta Materialia</i> , 2018 , 148, 5-9	5.6	31
223	High-Strength Nanotwinned Al Alloys with 9R Phase. Advanced Materials, 2018, 30, 1704629	24	60
222	Nanoscale Artificial Plasmonic Lattice in Self-Assembled Vertically Aligned Nitride-Metal Hybrid Metamaterials. <i>Advanced Science</i> , 2018 , 5, 1800416	13.6	44
221	Radiation damage in nanostructured materials. <i>Progress in Materials Science</i> , 2018 , 96, 217-321	42.2	178
220	Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications. <i>Tribology International</i> , 2018 , 123, 372-384	4.9	38
219	In situ studies on irradiation resistance of nanoporous Au through temperature-jump tests. <i>Acta Materialia</i> , 2018 , 143, 30-42	8.4	20
218	Tailorable Optical Response of AulliNbO3 Hybrid Metamaterial Thin Films for Optical Waveguide Applications. <i>Advanced Optical Materials</i> , 2018 , 6, 1800510	8.1	24
217	Self-assembled vertically aligned Ni nanopillars in CeO with anisotropic magnetic and transport properties for energy applications. <i>Nanoscale</i> , 2018 , 10, 17182-17188	7.7	31
216	Deformation mechanisms in FCC Co dominated by high-density stacking faults. <i>Materials Science</i> & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 12-21	5.3	17

215	In-situ high temperature micromechanical testing of ultrafine grained yttria-stabilized zirconia processed by spark plasma sintering. <i>Acta Materialia</i> , 2018 , 155, 128-137	8.4	11
214	In situ study on enhanced heavy ion irradiation tolerance of porous Mg. <i>Scripta Materialia</i> , 2018 , 144, 13-17	5.6	10
213	Texture-directed twin formation propensity in Al with high stacking fault energy. <i>Acta Materialia</i> , 2018 , 144, 226-234	8.4	22
212	Ultra-strong nanotwinned Al-Ni solid solution alloys with significant plasticity. <i>Nanoscale</i> , 2018 , 10, 220)2 5/2 20)3 <u>4</u> 9
211	Strengthening mechanisms and deformability of nanotwinned AlMg alloys. <i>Journal of Materials Research</i> , 2018 , 33, 3739-3749	2.5	11
210	Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. <i>Nature Communications</i> , 2018 , 9, 5389	17.4	53
209	Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique. <i>Crystals</i> , 2018 , 8, 128	2.3	2
208	A Review on the Radiation Response of Nanoporous Metallic Materials. <i>Jom</i> , 2018 , 70, 2753-2764	2.1	10
207	High temperature deformability of ductile flash-sintered ceramics via in-situ compression. <i>Nature Communications</i> , 2018 , 9, 2063	17.4	56
206	The temperature and size effect on the electrical resistivity of Cu/V multilayer films. <i>Acta Materialia</i> , 2017 , 126, 294-301	8.4	31
205	Self-Organized Epitaxial Vertically Aligned Nanocomposites with Long-Range Ordering Enabled by Substrate Nanotemplating. <i>Advanced Materials</i> , 2017 , 29, 1606861	24	28
204	Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. <i>Applied Physics Letters</i> , 2017 , 110, 161905	3.4	20
203	Self-assembled Co-BaZrO nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. <i>Nanoscale</i> , 2017 , 9, 7970-7976	7.7	54
202	Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500 °C. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 409, 323-327	1.2	17
201	In Situ Studies on the Irradiation-Induced Twin Boundary-Defect Interactions in Cu. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2017 , 48, 5172-5180	2.3	15
200	Novel Layered Supercell Structure from BiAlMnO for Multifunctionalities. <i>Nano Letters</i> , 2017 , 17, 6575	-6 <u>5</u> 83	18
199	Defect evolution in heavy ion irradiated nanotwinned Cu with nanovoids. <i>Journal of Nuclear Materials</i> , 2017 , 496, 293-300	3.3	9
198	Roles of strain and domain boundaries on the phase transition stability of VO2 thin films. <i>Applied Physics Letters</i> , 2017 , 111, 153102	3.4	16

(2016-2017)

197	Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates. <i>Journal of Materials Research</i> , 2017 , 32, 2680-2689	2.5	13
196	Ductile[Fracture of Metallic Glass Nanolaminates. Advanced Materials Interfaces, 2017, 4, 1700510	4.6	16
195	High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. <i>Nature Communications</i> , 2017 , 8, 1653	17.4	28
194	In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials</i> <i>Science</i> , 2017 , 48, 1466-1473	2.3	16
193	Radiation induced detwinning in nanotwinned Cu. Scripta Materialia, 2017, 130, 37-41	5.6	19
192	In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au. <i>Scientific Reports</i> , 2017 , 7, 39484	4.9	27
191	Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. <i>Acta Materialia</i> , 2016 , 120, 327-336	8.4	46
190	In situ studies on radiation tolerance of nanotwinned Cu. Acta Materialia, 2016, 111, 148-156	8.4	56
189	A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. <i>Acta Materialia</i> , 2016 , 112, 361-377	8.4	50
188	Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 16845-51	9.5	19
187	Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu. <i>Jom</i> , 2016 , 68, 235-241	2.1	9
186	Plastic deformation in nanocrystalline TiN at ultra-low stress: An in situ nanoindentation study. <i>Materials Science & Materials: Properties, Microstructure and Processing</i> , 2016 , 650, 445-453	5.3	12
185	In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals. <i>Jom</i> , 2016 , 68, 127-135	2.1	10
184	Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study. <i>Nano Letters</i> , 2016 , 16, 7481-7489	11.5	13
183	In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers. <i>Journal of Nuclear Materials</i> , 2016 , 475, 274-279	3.3	35
182	Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials. <i>Nano Letters</i> , 2016 , 16, 3936-43	11.5	75
181	In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials. <i>Jom</i> , 2016 , 68, 226-234	2.1	5
180	Twinning effects on strength and plasticity of metallic materials. MRS Bulletin, 2016, 41, 274-281	3.2	57

179	Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. <i>Acta Materialia</i> , 2016 , 114, 154-163	8.4	42
178	Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties. <i>ACS Applied Materials & Description</i> (2016), 8, 20283-91	9.5	33
177	In situ Observation of Defect Annihilation in Kr Ion-Irradiated Bulk Fe/Amorphous-Fe2Zr Nanocomposite Alloy. <i>Materials Research Letters</i> , 2015 , 3, 35-42	7.4	18
176	Strain and interface effects in a novel bismuth-based self-assembled supercell structure. <i>ACS Applied Materials & District Materials &</i>	9.5	17
175	Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling. <i>Nanoscale</i> , 2015 , 7, 13808-15	7.7	37
174	Resilient ZnO nanowires in an irradiation environment: An in situ study. <i>Acta Materialia</i> , 2015 , 95, 156-1	63 .4	18
173	In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. <i>Nano Letters</i> , 2015 , 15, 2922-7	11.5	78
172	Modulation of strength and plasticity of multiscale Ni/Cu laminated composites. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 216-220	5.3	19
171	Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces. <i>Journal of Materials Research</i> , 2015 , 30, 1300-1309	2.5	25
170	Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites. <i>ACS Applied Materials & Acs Applied Materials</i> & Acs Applied Materials & Acs Applied &	9.5	37
169	Radiation tolerant nanocrystalline ZrN films under high dose heavy-ion irradiations. <i>Journal of Applied Physics</i> , 2015 , 117, 145901	2.5	17
168	In situ studies on superior thermal stability of bulk FeZr nanocomposites. <i>Acta Materialia</i> , 2015 , 101, 125-135	8.4	11
167	Investigation of interfaces in Mg/Nb multilayer thin films. <i>Computational Materials Science</i> , 2015 , 108, 212-225	3.2	8
166	An ultrathin invisibility skin cloak for visible light. <i>Science</i> , 2015 , 349, 1310-4	33.3	684
165	The formation mechanisms of growth twins in polycrystalline Al with high stacking fault energy. <i>Acta Materialia</i> , 2015 , 101, 62-70	8.4	36
164	Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. <i>Acta Materialia</i> , 2015 , 84, 393-404	8.4	61
163	Damage-tolerant nanotwinned metals with nanovoids under radiation environments. <i>Nature Communications</i> , 2015 , 6, 7036	17.4	79
162	A Simple Physically Based Phenomenological Model for the Strengthening/Softening Behavior of Nanotwinned Copper. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	12

(2014-2015)

161	Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. <i>Scientific Reports</i> , 2015 , 5, 7801	4.9	65
160	In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. <i>Scientific Reports</i> , 2014 , 4, 3737	4.9	57
159	Size and stress dependent hydrogen desorption in metastable Mg hydride films. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 2597-2607	6.7	29
158	In situ neutron diffraction study on temperature dependent deformation mechanisms of ultrafine grained austenitic Fell4Crll6Ni alloy. <i>International Journal of Plasticity</i> , 2014 , 53, 125-134	7.6	8
157	Temperature and grain size dependent plastic instability and strain rate sensitivity of ultrafine grained austenitic Fell 4Crll 6Ni alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2014, 597, 415-421	5.3	16
156	In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. <i>Nature Communications</i> , 2014 , 5, 4864	17.4	81
155	Growth Twins and Deformation Twins in Metals. Annual Review of Materials Research, 2014, 44, 329-363	12.8	250
154	Quantitative damage and detwinning analysis of nanotwinned copper foil under cyclic loading. <i>Acta Materialia</i> , 2014 , 81, 184-193	8.4	26
153	Ab-initio calculations of the elastic and finite-temperature thermodynamic properties of niobium-and magnesium hydrides. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 15530-15539	6.7	8
152	Producing laminated NiAl with bimodal distribution of grain size by solid I quid reaction treatment. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 590, 318-322	5.3	22
151	Tailoring the formation of metastable Mg through interfacial engineering: A phase stability analysis. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2014 , 45, 145-150	1.9	13
150	A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation. <i>Scripta Materialia</i> , 2014 , 77, 5-8	5.6	36
149	Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. <i>Advanced Materials</i> , 2014 , 26, 3893-8	24	27
148	Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. <i>Acta Materialia</i> , 2014 , 74, 285-295	8.4	62
147	Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water. <i>Journal of Nuclear Materials</i> , 2014 , 451, 346-351	3.3	55
146	Fabrication of porous and pillar-shaped Mg by magnetron sputtering. <i>Thin Solid Films</i> , 2014 , 550, 220-22	.2 6.2	4
145	In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers. <i>Journal of Nuclear Materials</i> , 2014 , 452, 321-327	3.3	25
144	Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies. <i>Applied Physics Letters</i> , 2014 , 104, 231910	3.4	42

143	Repetitive Ultra-low Stress Induced Nanocrystallization in Amorphous Cu-Zr-Al Alloy Evidenced by in situ Nanoindentation. <i>Materials Research Letters</i> , 2014 , 2, 209-216	7.4	10
142	Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments. <i>Journal of Materials Science</i> , 2013 , 48, 7360-7373	4.3	37
141	In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials</i> <i>Science</i> , 2013 , 44, 1966-1974	2.3	81
140	In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. <i>Scripta Materialia</i> , 2013 , 69, 385-388	5.6	63
139	Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. <i>International Journal of Plasticity</i> , 2013 , 49, 152-163	7.6	91
138	Magnetic field induced phase transformation in polycrystalline NiCoMnAl thin films. <i>Applied Physics Letters</i> , 2013 , 103, 132404	3.4	11
137	Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films. <i>Journal of Materials Research</i> , 2013 , 28, 1729-1739	2.5	44
136	Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. <i>Journal of Nuclear Materials</i> , 2013 , 440, 310-318	3.3	58
135	Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. <i>Surface and Coatings Technology</i> , 2013 , 237, 269-275	4.4	27
134	Microstructure refinement and strengthening mechanisms of a 12Cr ODS steel processed by equal channel angular extrusion. <i>Journal of Alloys and Compounds</i> , 2013 , 577, 247-256	5.7	45
133	Enhanced ion irradiation tolerance properties in TiN/MgO nanolayer films. <i>Journal of Nuclear Materials</i> , 2013 , 434, 217-222	3.3	18
132	Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films. <i>Journal of Nuclear Materials</i> , 2013 , 441, 47-53	3.3	43
131	A new class of room-temperature multiferroic thin films with bismuth-based supercell structure. <i>Advanced Materials</i> , 2013 , 25, 1028-32	24	66
130	Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. <i>Nature Communications</i> , 2013 , 4, 1377	17.4	136
129	Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)(1-x):(ZnO)x thin films on silicon substrates. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	51
128	Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8328-8341	6.7	32
127	Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM. <i>Scientific Reports</i> , 2013 , 3, 1061	4.9	57
126	Basic criteria for formation of growth twins in high stacking fault energy metals. <i>Applied Physics Letters</i> , 2013 , 103, 181903	3.4	20

125	Stabilization of bcc Mg in Thin Films at Ambient Pressure: Experimental Evidence and ab initio Calculations. <i>Materials Research Letters</i> , 2013 , 1, 161-167	7.4	19
124	Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. <i>Physical Review B</i> , 2013 , 88,	3.3	285
123	Fluence-dependent radiation damage in helium (He) ion-irradiated Cu/V multilayers. <i>Philosophical Magazine</i> , 2013 , 93, 883-898	1.6	41
122	Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: an in situ study. <i>Philosophical Magazine</i> , 2013 , 93, 3547-3562	1.6	41
121	Formation Mechanisms of High-density Growth Twins in Aluminum with High Stacking-Fault Energy. <i>Materials Research Letters</i> , 2013 , 1, 51-60	7.4	67
120	A quantitative evaluation of microstructure by electron back-scattered diffraction pattern quality variations. <i>Microscopy and Microanalysis</i> , 2013 , 19 Suppl 5, 83-8	0.5	11
119	Intrinsic size-controlled strain hardening behavior of nanolayered Cu/Zr micropillars. <i>Scripta Materialia</i> , 2012 , 66, 706-709	5.6	22
118	Superior thermal stability of coherent twin boundaries in nanotwinned metals. <i>Scripta Materialia</i> , 2012 , 66, 860-865	5.6	134
117	Significant enhancement in the thermal stability of nanocrystalline metals via immiscible tri-phases. <i>Scripta Materialia</i> , 2012 , 67, 177-180	5.6	10
116	Enhanced radiation tolerance of ultrafine grained Fe©rNi alloy. <i>Journal of Nuclear Materials</i> , 2012 , 420, 235-240	3.3	68
115	Radiation damage in helium ion irradiated nanocrystalline Fe. <i>Journal of Nuclear Materials</i> , 2012 , 425, 140-146	3.3	129
114	Thermal stability of ultrafine grained FettrNi alloy. <i>Materials Science & Dineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 542, 64-70	5.3	28
113	Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus. <i>Materials Science & Discourse and Processing</i> , 2012 , 543, 139-144	5.3	24
112	Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 545, 118-122	5.3	39
111	Phase transformations in sputtered NiMnta magnetic shape memory alloy thin films. <i>Thin Solid Films</i> , 2012 , 520, 3433-3439	2.2	19
110	Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. <i>Applied Physics Letters</i> , 2012 , 101, 223112	3.4	78
109	A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. <i>Journal of Applied Physics</i> , 2012 , 111, 073526	2.5	32
108	Design of Radiation Tolerant Nanostructured Metallic Multilayers. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2012 , 134,	1.8	49

107	Indentation of nanotwinned fcc metals: Implications for nanotwin stability. <i>Acta Materialia</i> , 2012 , 60, 4623-4635	8.4	44
106	Mechanical properties of crystalline Cu/Zr and crystallmorphous Cu/Cullr multilayers. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 552, 392-398	5.3	77
105	Microstructure and strengthening mechanisms in Cu/Fe multilayers. <i>Acta Materialia</i> , 2012 , 60, 6312-632	28.4	89
104	Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. <i>Acta Materialia</i> , 2012 , 60, 1610-1622	8.4	99
103	Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: From bulk-like to small-volume materials behavior. <i>Acta Materialia</i> , 2012 , 60, 4054-4064	8.4	54
102	Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films. <i>Nanotechnology</i> , 2011 , 22, 315712	3.4	59
101	The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. <i>Philosophical Magazine Letters</i> , 2011 , 91, 18-28	1	62
100	Direct observation of twin deformation in YBa2Cu3O7\(\text{thin films by in situ nanoindentation in TEM. } Journal of Applied Physics, 2011 , 109, 083510	2.5	4
99	Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. <i>Scripta Materialia</i> , 2011 , 64, 149-152	5.6	93
98	The dislocation density and twin-boundary frequency determined by X-ray peak profile analysis in cold rolled magnetron-sputter deposited nanotwinned copper. <i>Journal of Applied Physics</i> , 2011 , 110, 043502	2.5	17
97	Twinning dislocation multiplication at a coherent twin boundary. <i>Acta Materialia</i> , 2011 , 59, 5989-5996	8.4	166
96	Length-scale-dependent deformation and fracture behavior of Cu/X (X=Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. <i>Acta Materialia</i> , 2011 , 59, 7368-7379	8.4	120
95	Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. <i>Materials Science & Discourse and Processing</i> , 2011 , 528, 7774-7780	5.3	35
94	In-situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. <i>Jom</i> , 2011 , 63, 62-66	2.1	17
93	Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films. <i>Advanced Functional Materials</i> , 2011 , 21, 2423-2429	15.6	158
92	Bi-relaxation behaviors in epitaxial multiferroic double-perovskite BiFe0.5Mn0.5O3/CaRuO3 heterostructures. <i>Applied Physics Letters</i> , 2011 , 99, 062905	3.4	21
91	Tilted Aligned Epitaxial La0.7Sr0.3MnO3 Nanocolumnar Films with Enhanced Low-Field Magnetoresistance by Pulsed Laser Oblique-Angle Deposition. <i>Crystal Growth and Design</i> , 2011 , 11, 540	3 -5409	9 ²⁵
90	High strength, epitaxial nanotwinned Ag films. <i>Acta Materialia</i> , 2011 , 59, 93-101	8.4	110

89	Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia, 2011, 59, 1924-1933	8.4	172
88	High strength Mg/Nb nanolayer composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 2028-2033	5.3	82
87	Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. <i>Materials Science & Dominant; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 2982-2987	5.3	24
86	Microstructural and electrical properties of Ce0.9Gd0.1O1.95 thin-film electrolyte in solid-oxide fuel cells. <i>Journal of Materials Research</i> , 2011 , 26, 854-859	2.5	11
85	The influence of B twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. <i>Journal of Materials Research</i> , 2011 , 26, 1666-1675	2.5	94
84	Crystallization and high temperature shape memory behavior of sputter-deposited NiMnCoIn thin films. <i>Applied Physics Letters</i> , 2010 , 96, 173102	3.4	17
83	Size dependent strengthening mechanisms in sputtered Fe/W multilayers. <i>Journal of Applied Physics</i> , 2010 , 107, 093503	2.5	24
82	A chemical solution approach for superconducting and hard epitaxial NbC film. <i>Chemical Communications</i> , 2010 , 46, 7837-9	5.8	19
81	Chemical solution deposition of epitaxial carbide films. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2516-7	16.4	39
80	Nanoporous thin films with controllable nanopores processed from vertically aligned nanocomposites. <i>Nanotechnology</i> , 2010 , 21, 285606	3.4	12
79	Plastic flow stability of nanotwinned Cu foils. International Journal of Plasticity, 2010, 26, 875-886	7.6	89
78	Detwinning mechanisms for growth twins in face-centered cubic metals. <i>Acta Materialia</i> , 2010 , 58, 2262	2-8.470	393
77	Interface-enabled defect reduction in He ion irradiated metallic multilayers. <i>Jom</i> , 2010 , 62, 75-78	2.1	55
76	Mechanical Behavior of Nanostructured Materials Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 777-777	2.3	1
75	A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films. <i>Scripta Materialia</i> , 2010 , 62, 333-336	5.6	54
74	Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. <i>Scripta Materialia</i> , 2010 , 63, 101-104	5.6	43
73	In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. <i>Scripta Materialia</i> , 2010 , 63, 363-366	5.6	76
72	Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. <i>Journal of Nuclear Materials</i> , 2010 , 407, 178-188	3.3	163

71	Ar-ion-milling-induced structural changes of Cu50Zr45Ti5 metallic glass. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 545-549	1.2	18
70	Grain and grain boundary activities observed in aluminalirconial agnesia spinel nanocomposites by in situ nanoindentation using transmission electron microscopy. <i>Acta Materialia</i> , 2010 , 58, 4891-4899	9 ^{8.4}	24
69	Dislocation structures of B {112} twin boundaries in face centered cubic metals. <i>Applied Physics Letters</i> , 2009 , 95, 021908	3.4	119
68	He ion irradiation damage in AlNb multilayers. Journal of Applied Physics, 2009, 105, 123522	2.5	66
67	Design of Nano-Composites for Ultra-High Strengths and Radiation Damage Tolerance. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1188, 131		10
66	Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. <i>Journal of Applied Physics</i> , 2009 , 106, 024313	2.5	46
65	Electron irradiation-induced structural transformation in metallic glasses. <i>Scripta Materialia</i> , 2009 , 61, 40-43	5.6	26
64	Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass. <i>Scripta Materialia</i> , 2009 , 61, 265-268	5.6	46
63	Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid Oxide Fuel Cells. <i>Advanced Functional Materials</i> , 2009 , 19, 3868-3873	15.6	88
62	Grain refinement of T91 alloy by equal channel angular pressing. <i>Journal of Nuclear Materials</i> , 2009 , 389, 221-224	3.3	25
61	He ion irradiation damage in Fe/W nanolayer films. <i>Journal of Nuclear Materials</i> , 2009 , 389, 233-238	3.3	152
60	Ion irradiation induced nanocrystal formation in amorphous Zr55Cu30Al10Ni5 alloy. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2009 , 267, 2827-2831	1.2	36
59	Effects of ion irradiation in metallic glasses. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2009 , 267, 1518-1521	1.2	47
58	Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. Journal of Nuclear Materials, 2009 , 385, 629-632	3.3	90
57	Thermal stability of sputtered Cu films with nanoscale growth twins. <i>Journal of Applied Physics</i> , 2008 , 103, 094322	2.5	188
56	Epitaxial cubic HfN diffusion barriers deposited on Si (001) by using a TiN buffer layer. <i>Journal of Vacuum Science & Technology B</i> , 2008 , 26, 1871-1874		7
55	Epitaxial nanotwinned Cu films with high strength and high conductivity. <i>Applied Physics Letters</i> , 2008 , 93, 083108	3.4	159
54	Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 493, 283-287	5.3	128

(2006-2008)

53	Cubic TaN diffusion barrier for Cu interconnects using an ultra-thin TiN seed layer. <i>Thin Solid Films</i> , 2008 , 516, 5103-5106	2.2	10
52	Nanoscale growth twins in sputtered metal films. <i>Jom</i> , 2008 , 60, 75-78	2.1	46
51	Cubic HfN Thin Films with Low Resistivity on Si (001) and MgO (001) Substrates. <i>Journal of Electronic Materials</i> , 2008 , 37, 1828-1831	1.9	7
50	TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63, 515-582	12.9	5084
49	Optical negative refraction in bulk metamaterials of nanowires. <i>Science</i> , 2008 , 321, 930	33.3	683
48	The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers. <i>Thin Solid Films</i> , 2007 , 515, 3241-3245	2.2	36
47	Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers. <i>Thin Solid Films</i> , 2007 , 515, 3574-3579	2.2	26
46	Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics. <i>Applied Surface Science</i> , 2007 , 254, 266-269	6.7	44
45	Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 261, 1129-1132	1.2	113
44	Ion irradiation effects in nanocrystalline TiN coatings. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 261, 1162-1166	1.2	60
43	Structure and properties of bulk nanostructured alloys synthesized by flux-melting. <i>Journal of Materials Science</i> , 2007 , 42, 1638-1648	4.3	12
42	The radiation damage tolerance of ultra-high strength nanolayered composites. <i>Jom</i> , 2007 , 59, 62-65	2.1	357
41	Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films. <i>Applied Physics Letters</i> , 2007 , 90, 153101	3.4	20
40	Far-field optical hyperlens magnifying sub-diffraction-limited objects. <i>Science</i> , 2007 , 315, 1686	33.3	1574
39	Thermal stability of sputtered CuB04 stainless steel multilayer films. <i>Journal of Applied Physics</i> , 2007 , 101, 124311	2.5	7
38	The Ultra Fine Grained (UFG) Zn Produced by Ball Milling. <i>Solid State Phenomena</i> , 2006 , 118, 609-614	0.4	1
37	Magnetic anisotropy study of ion-beam synthesized cobalt nanocrystals. <i>Applied Physics Letters</i> , 2006 , 89, 182502	3.4	6
36	High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. <i>Applied Physics Letters</i> , 2006 , 88, 173116	3.4	172

35	Identification of the misfit dislocations at YBa2Cu3O7 SrTiO3 interface using moir Fringe contrast. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 444, 1-4	1.3	24
34	Optimized energy window of He beams for accurate determination of depth in channeling Rutherford backscattering spectrometry. <i>Applied Physics Letters</i> , 2005 , 86, 221913	3.4	7
33	Depth profile of uncompensated spins in an exchange bias system. <i>Physical Review Letters</i> , 2005 , 95, 047201	7.4	156
32	Bulk nanostructured alloys prepared by flux melting and melt solidification. <i>Applied Physics Letters</i> , 2005 , 87, 141906	3.4	20
31	Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films. <i>Journal of Applied Physics</i> , 2005 , 97, 094302	2.5	55
30	Thickness effects of SrTiO3 buffer layers on superconducting properties of YBa2Cu3O7Leoated conductors. <i>Physica C: Superconductivity and Its Applications</i> , 2005 , 433, 43-49	1.3	22
29	Work hardening in rolled nanolayered metallic composites. <i>Acta Materialia</i> , 2005 , 53, 221-226	8.4	105
28	Synthesis of metallic nanocrystals with size and depth control: A case study. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2005 , 23, 1470		1
27	Tunable magnetic anisotropy of ultrathin Co layers. <i>Applied Physics Letters</i> , 2005 , 86, 042504	3.4	15
26	Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. <i>Applied Physics Letters</i> , 2005 , 87, 233116	3.4	32
25	Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films. <i>Journal of Materials Research</i> , 2004 , 19, 1696-1702	2.5	13
24	Microstructure and electronic properties of Cu/Mo multilayers and three-dimensional arrays of nanocrystalline Cu precipitates embedded in a Mo matrix. <i>Journal of Applied Physics</i> , 2004 , 95, 3644-364	1 8 .5	7
23	Residual stresses in sputter-deposited copper/330 stainless steel multilayers. <i>Journal of Applied Physics</i> , 2004 , 96, 7173-7178	2.5	24
22	Effect of crystallinity on the transport properties of Nd0.67Sr0.33MnO3 thin films. <i>Applied Physics Letters</i> , 2004 , 84, 1147-1149	3.4	20
21	Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. <i>Applied Physics Letters</i> , 2004 , 84, 1096-1098	3.4	183
20	Microstructure of SrTiO3 buffer layers and itseffects on superconducting properties of YBa2Cu3O7-Leoated conductors. <i>Journal of Materials Research</i> , 2004 , 19, 1869-1875	2.5	37
19	Factors limiting the measurement of residual stresses in thin films by nanoindentation. <i>Thin Solid Films</i> , 2004 , 447-448, 251-257	2.2	37
18	Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. <i>Acta Materialia</i> , 2004 , 52, 995-1002	8.4	222

LIST OF PUBLICATIONS

17	Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. <i>Journal of Materials Research</i> , 2003 , 18, 1600-1606	2.5	36
16	TaN-TiN binary alloys and superlattices as diffusion barriers for copper interconnects. <i>Journal of Electronic Materials</i> , 2003 , 32, 994-999	1.9	9
15	Synthesis of bulk nanostructured Zn by combinations of cryomilling and powder consolidation by room temperature milling: optimizing mechanical properties. <i>Scripta Materialia</i> , 2003 , 49, 429-433	5.6	23
14	Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling. <i>Materials Science &</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 175-181	5.3	31
13	Growth and characteristics of TaN/TiN superlattice structures. <i>Applied Physics Letters</i> , 2003 , 83, 3072-30	73.4	13
12	Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition. <i>Scripta Materialia</i> , 2002 , 46, 661-665	5.6	48
11	Mechanical properties of cyromilled nanocrystalline Zn studied by the miniaturized disk bend test. <i>Acta Materialia</i> , 2002 , 50, 3527-3533	8.4	17
10	Modulated oscillatory hardening and dynamic recrystallization in cryomilled nanocrystalline Zn. <i>Acta Materialia</i> , 2002 , 50, 3995-4004	8.4	33
9	Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. <i>Acta Materialia</i> , 2002 , 50, 4823-4830	8.4	96
8	Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. <i>Applied Physics Letters</i> , 2002 , 80, 2323-2325	3.4	32
7	Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature. <i>Applied Physics Letters</i> , 2002 , 81, 823-825	3.4	65
6	Copper diffusion characteristics in single-crystal and polycrystalline TaN. <i>Applied Physics Letters</i> , 2002 , 81, 1453-1455	3.4	38
5	Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder. <i>Acta Materialia</i> , 2001 , 49, 1319-1326	8.4	78
4	Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon. <i>Journal of Materials Research</i> , 2001 , 16, 2733-2738	2.5	33
3	Origins of stored enthalpy in cryomilled nanocrystalline Zn. <i>Journal of Materials Research</i> , 2001 , 16, 348.	523;495	5 16
2	Electroforming-Free HfO2:CeO2 Vertically Aligned Nanocomposite Memristors with Anisotropic Dielectric Response. <i>ACS Applied Electronic Materials</i> ,	4	4
1	Achieving strong and stable nanocrystalline Al alloys through compositional design. <i>Journal of Materials Research</i> ,1	2.5	О