Flavio A Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology, 2005, 3, 47-58.	28.6	394
2	A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Molecular Microbiology, 2005, 56, 638-648.	2.5	95
3	Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes, 2018, 9, 125.	2.4	93
4	A C Subunit of the Plant Nuclear Factor NF-Y Required for Rhizobial Infection and Nodule Development Affects Partner Selection in the Common Bean– <i>Rhizobium etli</i> Symbiosis Â. Plant Cell, 2011, 22, 4142-4157.	6.6	91
5	A phylogenetically conserved group of NF-Y transcription factors interact to control nodulation in legumes. Plant Physiology, 2015, 169, pp.01144.2015.	4.8	72
6	Selective recruitment of m <scp>RNA</scp> s and mi <scp>RNA</scp> s to polyribosomes in response to rhizobia infection in <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 73, 289-301.	5.7	70
7	The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. Plant Physiology, 2017, 174, 2469-2486.	4.8	67
8	Translating Ribosome Affinity Purification (TRAP) Followed by RNA Sequencing Technology (TRAP-SEQ) for Quantitative Assessment of Plant Translatomes. Methods in Molecular Biology, 2015, 1284, 185-207.	0.9	65
9	A Small GTPase of the Rab Family Is Required for Root Hair Formation and Preinfection Stages of the Common Bean– <i>Rhizobium</i> Symbiotic Association. Plant Cell, 2009, 21, 2797-2810.	6.6	63
10	A Nuclear Factor Y Interacting Protein of the GRAS Family Is Required for Nodule Organogenesis, Infection Thread Progression, and Lateral Root Growth Â. Plant Physiology, 2014, 164, 1430-1442.	4.8	55
11	Molecular characterization ofÂaÂpotato MAP kinase transcriptionally regulated byÂmultiple environmental stresses. Plant Physiology and Biochemistry, 2006, 44, 315-322.	5.8	48
12	How legumes recognize rhizobia. Plant Signaling and Behavior, 2016, 11, e1120396.	2.4	45
13	Host Genes Involved in Nodulation Preference in Common Bean (<i>Phaseolus) Tj ETQq1 1 0.784314 rgBT /Ove Molecular Plant-Microbe Interactions, 2008, 21, 459-468.</i>	rlock 10 Ti 2.6	f 50 267 Td (41
14	Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris. Plant Physiology and Biochemistry, 2013, 68, 81-89.	5.8	38
15	Small GTPases in plant biotic interactions. Small GTPases, 2019, 10, 350-360.	1.6	30
16	The PvNF-YA1 and PvNF-YB7 Subunits of the Heterotrimeric NF-Y Transcription Factor Influence Strain Preference in the Phaseolus vulgaris–Rhizobium etli Symbiosis. Frontiers in Plant Science, 2019, 10, 221.	3.6	25
17	Changes in the Common Bean Transcriptome in Response to Secreted and Surface Signal Molecules of <i>Rhizobium etli</i> . Plant Physiology, 2015, 169, 1356-1370.	4.8	24
18	Annotation, phylogeny and expression analysis of the nuclear factor Y gene families in common bean (Phaseolus vulgaris). Frontiers in Plant Science, 2014, 5, 761.	3.6	20

FLAVIO A BLANCO

#	Article	IF	CITATIONS
19	Reprogramming of Root Cells during Nitrogen-Fixing Symbiosis Involves Dynamic Polysome Association of Coding and Noncoding RNAs. Plant Cell, 2020, 32, 352-373.	6.6	20
20	Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. Journal of Experimental Botany, 2003, 54, 623-632.	4.8	19
21	The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis. Plant Molecular Biology, 2017, 93, 549-562.	3.9	18
22	Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 659061.	3.6	18
23	Transcriptional regulators of legume-rhizobia symbiosis. Plant Signaling and Behavior, 2014, 9, e28847.	2.4	16
24	Transcriptional and functional variation of <scp><i>NFâ€YC1</i></scp> in genetically diverse accessions of <i><scp>P</scp>haseolus vulgaris</i> during the symbiotic association with <i><scp>R</scp>hizobium etli</i> . Plant Biology, 2013, 15, 808-818.	3.8	15
25	Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants. Plant Signaling and Behavior, 2018, 13, e1432956.	2.4	13
26	To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. Current Opinion in Plant Biology, 2020, 56, 109-117.	7.1	8
27	Transcriptomic analysis of Mesoamerican and Andean Phaseolus vulgaris accessions revealed mRNAs and IncRNAs associated with strain selectivity during symbiosis. Scientific Reports, 2022, 12, 2614.	3.3	3
28	Insights into post-transcriptional regulation during legume-rhizobia symbiosis. Plant Signaling and Behavior, 2013, 8, e23102.	2.4	2
29	Translational switching from growth to defense – a common role for TOR in plant and mammalian immunity?. Journal of Experimental Botany, 2017, 68, 2077-2081.	4.8	2
30	TRAP-SEQ of Eukaryotic Translatomes Applied to the Detection of Polysome-Associated Long Noncoding RNAs. Methods in Molecular Biology, 2020, 2166, 451-472.	0.9	2
31	Identification of conserved and new miRNAs that affect nodulation and strain selectivity in the <i>Phaseolus vulgaris–Rhizobium etli</i> symbiosis through differential analysis of host small RNAs. New Phytologist, 2022, 234, 1430-1447.	7.3	2
32	Translational regulation in pathogenic and beneficial plant–microbe interactions. Biochemical Journal, 2021, 478, 2775-2788.	3.7	1