Weidong Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405684/publications.pdf

Version: 2024-02-01

101543 114465 4,283 100 36 63 citations g-index h-index papers 100 100 100 4754 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15040-15046.	10.3	233
2	Heterostructural Graphene Quantum Dot/MnO ₂ Nanosheets toward Highâ€Potential Window Electrodes for Highâ€Performance Supercapacitors. Advanced Science, 2018, 5, 1700887.	11.2	215
3	Recent Progress in Graphene/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2001105.	21.0	210
4	Core-branched CoSe ₂ /Ni _{0.85} Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19151-19158.	10.3	171
5	Defects and Aliovalent Doping Engineering in Electroceramics. Chemical Reviews, 2020, 120, 1710-1787.	47.7	151
6	Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Applied Physics Letters, 2016, 108, .	3.3	136
7	Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting. Nano-Micro Letters, 2019, 11, 55.	27.0	125
8	High Energy Storage Performance of Opposite Doubleâ€Heterojunction Ferroelectricity–Insulators. Advanced Functional Materials, 2018, 28, 1706211.	14.9	117
9	Highâ€Energy Storage Density and Efficiency of (1â^' <i>x</i>)[0.94 NBT–0.06 BT]– <i>x</i>)Ceramics. Energy Technology, 2015, 3, 1198-1204.	i€ F ree	109
10	Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process. Carbon, 2018, 139, 954-963.	10.3	106
11	<i>In situ</i> encapsulated Fe ₃ O ₄ nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24594-24601.	10.3	105
12	Designing oxygen bonding between reduced graphene oxide and multishelled Mn ₃ O ₄ hollow spheres for enhanced performance of supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6686-6694.	10.3	103
13	Mn doping to enhance energy storage performance of lead-free 0.7NBT-0.3ST thin films with weak oxygen vacancies. Applied Physics Letters, 2017, 110, .	3.3	97
14	Graphene-copper composite with micro-layered grains and ultrahigh strength. Scientific Reports, 2017, 7, 41896.	3.3	94
15	Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength. Carbon, 2018, 127, 329-339.	10.3	81
16	Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochimica Acta, 2019, 312, 54-61.	5.2	81
17	Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon, 2015, 85, 249-260.	10.3	74
18	Interlayer coupling to enhance the energy storage performance of Na _{0.5} Bi _{0.5} TiO ₃ â€"SrTiO ₃ multilayer films with the electric field amplifying effect. Journal of Materials Chemistry A, 2018, 6, 24550-24559.	10.3	74

#	Article	IF	CITATIONS
19	Large piezoelectric properties induced by doping ionic pairs in BaTiO 3 ceramics. Acta Materialia, 2014, 79, 84-92.	7.9	72
20	Magnetic properties of N-doped graphene with high Curie temperature. Scientific Reports, 2016, 6, 21832.	3.3	71
21	Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 554, 59-65.	9.4	70
22	Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. Journal of Colloid and Interface Science, 2019, 536, 456-462.	9.4	70
23	Highâ€energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. Journal of the American Ceramic Society, 2017, 100, 3080-3087.	3.8	66
24	Large-area synthesis of monolayer MoSe ₂ films on SiO ₂ /Si substrates by atmospheric pressure chemical vapor deposition. RSC Advances, 2017, 7, 27969-27973.	3.6	66
25	Mesostructured Carbon Nanotube-on-MnO ₂ Nanosheet Composite for High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors. ACS Applied	8.0	65
26	High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping. Energy Storage Materials, 2019, 18, 238-245.	18.0	61
27	Hierarchical CuCo ₂ O ₄ @NiMoO ₄ core–shell hybrid arrays as a battery-like electrode for supercapacitors. Inorganic Chemistry Frontiers, 2017, 4, 1575-1581.	6.0	55
28	Ultrahigh energy storage and electrocaloric performance achieved in SrTiO ₃ amorphous thin films <i>via</i> polar cluster engineering. Journal of Materials Chemistry A, 2019, 7, 17797-17805.	10.3	54
29	High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances, 2015, 5, 51193-51200.	3.6	52
30	Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. Journal of Colloid and Interface Science, 2019, 552, 332-336.	9.4	49
31	Direct synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: A route to high strength and electrical conductivity for graphene/Cu composite. Journal of Alloys and Compounds, 2019, 798, 403-413.	5.5	46
32	A supercapacitor with ultrahigh volumetric capacitance produced by self-assembly of reduced graphene oxide through phosphoric acid treatment. Journal of Materials Chemistry A, 2020, 8, 18933-18944.	10.3	46
33	Perovskite Sr _{1–<i>x</i>} (Na _{0.5} Bi _{0.5}) _{<i>x</i>} Ti _{Ti_{0.99}Mn< Thin Films with Defect Dipoles for High Energy-Storage and Electrocaloric Performance. ACS Applied Materials & Amp: Interfaces. 2019. 11. 37947-37954.}	sub>0.01	0 <sul< td=""></sul<>
34	Electrodeposited nickel cobalt sulfide nanosheet arrays on 3D-graphene/Ni foam for high-performance supercapacitors. RSC Advances, 2015, 5, 100106-100113.	3.6	40
35	Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Applied Physics Letters, 2016, 108, 162902.	3.3	38
36	0.6ST-0.4NBT thin film with low level Mn doping as a lead-free ferroelectric capacitor with high energy storage performance. Applied Physics Letters, 2018, 112, .	3.3	38

#	Article	IF	CITATIONS
37	Rational construction of core–shell Ni3S2@Ni(OH)2 nanostructures as battery-like electrodes for supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1985-1991.	6.0	37
38	Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Advances, 2014, 4, 26335-26341.	3.6	36
39	Positive/negative electrocaloric effect induced by defect dipoles in PZT ferroelectric bilayer thin films. RSC Advances, 2016, 6, 71934-71939.	3.6	36
40	Effect of Ball Milling on the Defeat of Few-Layer Graphene and Properties of Copper Matrix Composites. Acta Metallurgica Sinica (English Letters), 2014, 27, 937-943.	2.9	35
41	High strength and ductility of graphene-like carbon nanosheet/copper composites fabricated directly from commercial oleic acid coated copper powders. Nanoscale, 2018, 10, 16990-16995.	5.6	35
42	Effect of interfacial state on thermal expansion behaviors of \hat{I}^2 -LiAlSiO4 particulate-reinforced Cu composites. Scripta Materialia, 2010, 62, 867-870.	5.2	34
43	LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1â^'x)BZTâ€"xBCT thin films. Journal of the European Ceramic Society, 2015, 35, 2041-2049.	5.7	34
44	In situ synthesis of core-shell vanadium nitride@N-doped carbon microsheet sponges as high-performance anode materials for solid-state supercapacitors. Journal of Colloid and Interface Science, 2020, 560, 122-129.	9.4	34
45	In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors. Journal of Power Sources, 2016, 307, 129-137.	7.8	31
46	Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO 3 particles. Materials and Design, 2017, 132, 442-447.	7.0	30
47	Significantly enhanced energy storage performance in BiFeO ₃ sandwich-structured films through crystallinity regulation. Physical Chemistry Chemical Physics, 2018, 20, 21917-21924.	2.8	30
48	High energy storage density achieved in Bi3+-Li+ co-doped SrTi0.99Mn0.01O3 thin film via ionic pair doping-engineering. Journal of the European Ceramic Society, 2020, 40, 706-711.	5.7	30
49	Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics. Physical Chemistry Chemical Physics, 2014, 16, 13078.	2.8	27
50	Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. Materials and Design, 2016, 92, 462-470.	7.0	27
51	High energy-storage density of lead-free (Sr _{1â^1.5x} Bi _x)Ti _{0.99} Mn _{0.01} O ₃ thin films induced by Bi ³⁺ –V _{Sr} dipolar defects. Physical Chemistry Chemical Physics, 2019. 21. 16359-16366.	2.8	26
52	Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency. Journal of Materials Science and Technology, 2020, 44, 54-61.	10.7	25
53	Effects of lanthanum doping on the preferred orientation, phase structure and electrical properties of sol–gel derived Pb1–3x/2Lax (Zr0.6Ti0.4)O3 thin films. Journal of Alloys and Compounds, 2011, 509, 2976-2980.	5.5	24
54	"One-for-All―strategy to design oxygen-deficient triple-shelled MnO ₂ and hollow Fe ₂ O ₃ microcubes for high energy density asymmetric supercapacitors. Dalton Transactions, 2019, 48, 8623-8632.	3.3	23

#	Article	IF	Citations
55	Enhanced performance of core-shell-like structure Zr-doped CaCu3Ti4O12 ceramics prepared by a flame synthetic approach. RSC Advances, 2012, 2, 6073.	3.6	22
56	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	10.3	22
57	Multiferroic Properties and Magnetic Anisotropy in P(VDF-TrFE) Composites with Oriented CoFe ₂ O ₄ Nanofibers. Journal of Physical Chemistry C, 2021, 125, 8840-8852.	3.1	22
58	All-in-One Sulfur Host: Smart Controls of Architecture and Composition for Accelerated Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 39424-39434.	8.0	22
59	A self-powered flexible UV-visible photodetector with high photosensitivity based on BiFeO ₃ /XTiO ₃ (Sr, Zn, Pb) multilayer films. Journal of Materials Chemistry A, 2022, 10, 8772-8783.	10.3	22
60	Enhanced energy storage properties of amorphous BiFeO3/Al2O3 multilayers. Journal of Materials Research and Technology, 2021, 11, 1852-1858.	5.8	21
61	Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation. RSC Advances, 2015, 5, 19321-19328.	3.6	20
62	Sea urchin-like CuCo ₂ S ₄ microspheres with a controllable interior structure as advanced electrode materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 603-609.	6.0	20
63	Facile synthesis of high-performance carbon nanosheet/Cu composites from copper formate. Carbon, 2020, 165, 349-357.	10.3	17
64	Effect of defects controlled by preparation condition and heat treatment on the ferromagnetic properties of few-layer graphene. Scientific Reports, 2017, 7, 5877.	3.3	16
65	A highly conductive Ni(OH) ₂ nano-sheet wrapped CuCo ₂ S ₄ nano-tube electrode with a core–shell structure for high performance supercapacitors. Dalton Transactions, 2021, 50, 8476-8486.	3.3	14
66	Effect of H2 Reduction Temperature on the Properties of Reduced Graphene Oxide and Copper Matrix Composites. Acta Metallurgica Sinica (English Letters), 2014, 27, 924-929.	2.9	13
67	Effect of doped boron on the properties of ZnO thin films prepared by sol-gel spin coating. Chemical Research in Chinese Universities, 2014, 30, 509-512.	2.6	13
68	Ba and Mg co-doping to suppress high-temperature dielectric loss in lead-free Na0.5Bi0.5TiO3-based systems. Journal of the European Ceramic Society, 2020, 40, 720-727.	5.7	13
69	Large-scale synthesis and characterization of super-bundle single-walled carbon nanotubes by water-assisted chemical vapor deposition. RSC Advances, 2015, 5, 30564-30569.	3.6	12
70	Local Order and Oxygen Ion Conduction Induced High-Temperature Colossal Permittivity in Lead-Free Bi _{0.5} Na _{0.5} TiO ₃ -Based Systems. ACS Applied Energy Materials, 2018, 1, 956-962.	5.1	12
71	Lateral size effect of reduced graphene oxide on properties of copper matrix composites. Materials Science & Science & Properties, Microstructure and Processing, 2021, 820, 141579.	5.6	12
72	Thermal expansion behavior of a β-LiAlSiO4/Cu composite. Rare Metals, 2009, 28, 82-85.	7.1	11

#	Article	IF	CITATIONS
73	Enhanced Piezoelectric Properties of Li ⁺ and Al ³⁺ -Modified Barium Titanate Ceramics. Ferroelectrics, 2015, 489, 156-163.	0.6	10
74	Large Piezoelectric Response Induced by the Coexistence of Low-Symmetry and Self-Polarization in Li $<$ sup $>+<$ /sup $>-$ Nb $<$ sup $>5+<$ /sup $>-$ Doped BiFeO $<$ sub $>3<$ /sub $>$ Polycrystalline Films. Journal of Physical Chemistry C, 2016, 120, 6246-6251.	3.1	10
75	PVDF-based composites filled with PZT@Ag core-shell structured particles for enhanced dielectric properties. Modern Physics Letters B, 2019, 33, 1950139.	1.9	10
76	Enhanced thermal and mechanical properties of Sr0.2Ba0.8TiO3/Cu composites by introducing Cu2O interface coating. Materials and Design, 2019, 166, 107594.	7.0	10
77	A two-step thermal treatment method to produce reduced graphene oxide with selectively increasing electrochemically active carbonyl group content for high-performance supercapacitor electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126573.	4.7	10
78	Tensile properties of ZnO- and ZnAl ₂ O ₄ -coated aluminum borate whiskers reinforced aluminum composites at elevated temperatures. Journal of Composite Materials, 2012, 46, 1475-1481.	2.4	9
79	Effect of deformation on thermal expansion behavior of Sr0.2Ba0.8TiO3/Cu composite. Journal of Alloys and Compounds, 2017, 729, 735-741.	5.5	8
80	Tensile properties of thermally exposed aluminium borate whisker reinforced 6061 aluminium alloy composite. Materials Science and Technology, 2000, 16, 431-435.	1.6	7
81	Microstructures and Electric Properties of Highly (111)-Oriented Nb-Doped Pb(Zr0.2,Ti0.8)O3 Films with Pb0.8La0.1Ca0.1Ti0.975O3 Seed Layer. Journal of the American Ceramic Society, 2011, 94, 1503-1508.	3.8	7
82	Research progress in molecular dynamics simulation of CNT and graphene reinforced metal matrix composites. Oxford Open Materials Science, 2020, $1,\ldots$	1.8	7
83	Eco-friendly and sustainable approach of assembling sugars into biobased carbon fibers. Green Chemistry, 2022, 24, 5097-5106.	9.0	7
84	A saddle-shaped <i>o</i> -tetraphenylene based molecular semiconductor with a high glass transition temperature for perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9927-9936.	10.3	6
85	Self-powered visible light photodetector based on BixFeO3 film. Ceramics International, 2022, 48, 2811-2819.	4.8	5
86	Li ⁺ -assisted treatment of graphene oxide for ultrahigh volumetric performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 10427-10438.	10.3	5
87	Highâ€Performance Supercapacitors: In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for Highâ€Performance Supercapacitors (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870019.	11.2	4
88	Effects of high-shear mixing and the graphene oxide weight fraction on the electrochemical properties of the GO/Ni(OH) ₂ electrode. Dalton Transactions, 2020, 49, 1752-1764.	3.3	4
89	Magnetic Properties of Co-Fe-B Amorphous Films Thermomagnetically Treated with Different Field Directions. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	3
90	Thickness-Dependent Monoclinic Phases and Piezoelectric Properties Observed in Polycrystalline (Pb0.94La0.04)(Zr0.60Ti0.40)O3 Thin Films. Journal of Physical Chemistry C, 2015, 119, 17487-17492.	3.1	3

#	Article	IF	CITATIONS
91	Role of A- and B-site excess doping on the improvement of the piezoelectric properties of BaTiO3 lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7831-7838.	2.2	3
92	Effect of Excess Ratio of Alkali Metal on Microstructure and Ferroelectric Property of K _{0.5} Na _{0.5} NbO ₃ Thin Film. Integrated Ferroelectrics, 2021, 213, 137-145.	0.7	3
93	A new polymorph phase of LiAlSiO ₄ in β-LiAlSiO ₄ /Cu composite. Advanced Composite Materials, 2014, 23, 327-335.	1.9	2
94	Two-dimensional electron gas in the KNbO3:Y ultrathin film. Journal of Materials Science, 2015, 50, 74-78.	3.7	2
95	Structureâ€Property Relationships: High Energy Storage Performance of Opposite Doubleâ€Heterojunction Ferroelectricity–Insulators (Adv. Funct. Mater. 10/2018). Advanced Functional Materials, 2018, 28, 1870066.	14.9	2
96	Interface design and engineering in Al matrix composite with low CTE and high strength reinforced by barium strontium titanate particles. Materials Today Communications, 2022, 31, 103512.	1.9	2
97	Graphene-like carbon nanosheet/copper composite with combined performance designed by pyrolyzing trimesic acid@copper formate. Journal of Materials Research and Technology, 2021, 13, 111-120.	5.8	1
98	Tensile properties of an aluminum matrix composite reinforced by SnO2-coated Al18B4O33 whisker. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1166-1170.	1.0	0
99	Phase composition and electrical properties of KO.4NaO.6Nb1â^'xTaxO3 lead-free thin films. Ferroelectrics, 2019, 540, 103-111.	0.6	0
100	Giant Piezoelectric Properties of ZnO Film Doped with Acceptor-Donor Ionic Pair. SSRN Electronic Journal, $0, , .$	0.4	0