
José RodrÃ-guez FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405665/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 2008, 34, 198-223.	31.2	1,578
2	Diesel particulate emissions from used cooking oil biodiesel. Bioresource Technology, 2008, 99, 731-740.	9.6	234
3	Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 2011, 37, 503-523.	31.2	229
4	Modeling viscosity of butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2017, 199, 332-338.	6.4	124
5	Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 2009, 37, 4337-4344.	8.8	123
6	Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chemistry and Physics of Lipids, 2010, 163, 720-727.	3.2	111
7	Characterization of the Diesel Soot Oxidation Process through an Optimized Thermogravimetric Method. Energy & Fuels, 2011, 25, 2039-2048.	5.1	102
8	Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling. Fuel, 2009, 88, 1031-1041.	6.4	92
9	Soot reactivity analysis and implications on diesel filter regeneration. Progress in Energy and Combustion Science, 2020, 78, 100833.	31.2	91
10	Performance and emissions of an automotive diesel engine using a tire pyrolysis liquid blend. Fuel, 2014, 115, 490-499.	6.4	88
11	Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 2017, 104, 30-39.	8.9	75
12	Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2018, 224, 552-559.	6.4	67
13	Effect of oxygenated and paraffinic alternative diesel fuels on soot reactivity and implications on DPF regeneration. Fuel, 2016, 185, 460-467.	6.4	64
14	Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions. Energy, 2012, 47, 543-552.	8.8	59
15	Raising the fuel heating value and recovering exhaust heat by on-board oxidative reforming of bioethanol. Energy and Environmental Science, 2010, 3, 780.	30.8	57
16	Thermogravimetric analysis of diesel particulate matter. Measurement Science and Technology, 2007, 18, 650-658.	2.6	55
17	Biodiesel from Low-Grade Animal Fats: Diesel Engine Performance and Emissions. Energy & Fuels, 2009, 23, 121-129.	5.1	52
18	Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel, 2012, 93, 391-396.	6.4	49

#	Article	IF	CITATIONS
19	Combining GTL fuel, reformed EGR and HC-SCR aftertreatment system to reduce diesel NOx emissions. A statistical approach. International Journal of Hydrogen Energy, 2009, 34, 2789-2799.	7.1	48
20	Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel. Renewable Energy, 2019, 132, 278-283.	8.9	45
21	Effect of a glycerol-derived advanced biofuel –FACE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle. Energy, 2015, 93, 568-579.	8.8	42
22	Emission benefits from the use of n-butanol blends in a Euro 6 diesel engine. International Journal of Engine Research, 2018, 19, 1099-1112.	2.3	39
23	Effect of the Degree of Unsaturation of Biodiesel Fuels on NOx and Particulate Emissions. SAE International Journal of Fuels and Lubricants, 0, 1, 1150-1158.	0.2	33
24	Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chemistry and Physics of Lipids, 2010, 163, 172-181.	3.2	33
25	Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties. Energies, 2019, 12, 2034.	3.1	33
26	Multi-Technique Analysis of Soot Reactivity from Conventional and Paraffinic Diesel Fuels. Flow, Turbulence and Combustion, 2016, 96, 327-341.	2.6	32
27	Neural networks estimation of diesel particulate matter composition from transesterified waste oils blends. Fuel, 2005, 84, 2080-2085.	6.4	29
28	Gasoline direct injection engine soot oxidation: Fundamentals and determination of kinetic parameters. Combustion and Flame, 2018, 190, 177-187.	5.2	29
29	Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and Bioenergy, 2015, 76, 130-140.	5.7	27
30	Interaction of diesel engine soot with NO2 and O2 at diesel exhaust conditions. Effect of fuel and engine operation mode. Fuel, 2018, 212, 455-461.	6.4	26
31	Improving the low temperature NOx reduction activity over a Ag-Al2O3 catalyst. Chemical Engineering Journal, 2010, 158, 402-410.	12.7	25
32	Effect of the trapped mass and its composition on the heat transfer in the compression cycle of a reciprocating engine. Applied Thermal Engineering, 2005, 25, 2842-2853.	6.0	21
33	Estimation of Cold Flow Performance and Oxidation Stability of Fatty Acid Ethyl Esters from Lipids Obtained from <i>Escherichia coli</i> . Energy & Fuels, 2015, 29, 2493-2502.	5.1	20
34	Molecular interactions in blends of alcohols with diesel fuels: Effect on stability and distillation. Fuel, 2015, 139, 171-179.	6.4	20
35	Effect of advanced biofuels on WLTC emissions of a Euro 6 diesel vehicle with SCR under different climatic conditions. International Journal of Engine Research, 2021, 22, 3433-3446.	2.3	19
36	Determination of optical and dielectric properties of blends of alcohol with diesel and biodiesel fuels from terahertz spectroscopy. Fuel, 2020, 274, 117877.	6.4	17

José RodrÃguez FernÃindez

#	Article	IF	CITATIONS
37	Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating. Energies, 2020, 13, 3499.	3.1	16
38	Performance and regulated gaseous emissions of a Euro 6 diesel vehicle with Lean NOx Trap at different ambient conditions: Sensitivity to the type of fuel. Energy Conversion and Management, 2020, 219, 113023.	9.2	16
39	Engine Performance and Emissions from Dual Fuelled Engine with In-Cylinder Injected Diesel Fuels and In-Port Injected Bioethanol. , 0, , .		15
40	Investigation of the Deactivation of a NO _{<i>x</i>} -Reducing Hydrocarbon-Selective Catalytic Reduction (HC-SCR) Catalyst by Thermogravimetric Analysis: Effect of the Fuel and Prototype Catalyst. Energy & Fuels, 2010, 24, 992-1000.	5.1	15
41	Molecular Characterization of the Gas–Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method. Environmental Science & Technology, 2016, 50, 2946-2955.	10.0	15
42	Blending scenarios for soybean oil derived biofuels with conventional diesel. Biomass and Bioenergy, 2013, 49, 74-85.	5.7	14
43	Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel. , 0, , .		13
44	Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine. Energy, 2020, 201, 117645.	8.8	12
45	Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel. , 0, ,		10
46	Fatty acid methyl and ethyl esters obtained from rare seeds from Tunisia: <i>Ammi visnaga, Citrullus colocynthis, Datura stramonium, Ecballium elaterium</i> , and <i>Silybum marianum</i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 93-99.	2.3	9
47	Surface tension of diesel-alcohol blends: Selection among fundamental and empirical models. Fluid Phase Equilibria, 2022, 555, 113363.	2.5	9
48	Understanding the Ag/Al2O3 hydrocarbon-SCR catalyst deactivation through TG/DT analyses of different configurations. Applied Catalysis B: Environmental, 2010, 97, 373-380.	20.2	8
49	Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS). Environmental Science and Pollution Research, 2017, 24, 7534-7543.	5.3	8
50	When diesel NOx aftertreatment systems meet advanced biofuels. Results in Engineering, 2019, 2, 100009.	5.1	8
51	Vehicle Emissions from a Glycerol-Derived Biofuel under Cold and Warm Conditions. Energy & Fuels, 2020, 34, 6020-6029.	5.1	8
52	Biofuels derived from Turkish industry wastes—a study of performance and emissions in a diesel engine. Environmental Progress and Sustainable Energy, 2016, 35, 847-852.	2.3	7
53	Study and characterization of the instabilities generated in expanding spherical flames of hydrogen/methane/air mixtures. International Journal of Hydrogen Energy, 2022, 47, 22616-22632.	7.1	7
54	Fuel economy, NO _x emissions and lean NO _x trap efficiency: Lessons from current driving cycles. International Journal of Engine Research, 2022, 23, 1047-1060.	2.3	6

#	Article	IF	CITATIONS
55	WLTC and real-driving emissions for an autochthonous biofuel from wine-industry waste. Scientific Reports, 2021, 11, 7528.	3.3	5
56	Fatty acid methyl esters (FAME) from oleaginous seeds grown in arid lands. Part II: <i><i>Ibicella lutea</i>, <i>Onopordum nervosum</i>, <i>Peganum harmala</i>, <i>Smyrnium olusatrum</i></i> and <i><i>Solanum elaeagnifolium</i></i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1434-1441.	2.3	3
57	Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters. Advances in Mechanical Engineering, 2019, 11, 168781401987707.	1.6	3
58	Relaxation Dynamics of Ethanol and N-Butanol in Diesel Fuel Blends from Terahertz Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 772-792.	2.2	0