
Waheed Miran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane dry reforming with CO2 over ceria supported Ni catalyst prepared by reverse microemulsion synthesis. Fuel, 2022, 317, 123433.	6.4	12
2	Current Production Capability of Drug-Resistant Pathogen Enables Its Rapid Label-Free Detection Applicable to Wastewater-Based Epidemiology. Microorganisms, 2022, 10, 472.	3.6	3
3	Carbamazepine biodegradation and volatile fatty acids production by selectively enriched sulfateâ€reducing bacteria and fermentative acidogenic bacteria. Journal of Chemical Technology and Biotechnology, 2021, 96, 592-602.	3.2	7
4	MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance. Chemosphere, 2021, 265, 129098.	8.2	47
5	Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere, 2021, 268, 128784.	8.2	49
6	Pathogens electrogenicity as a tool for in-situ metabolic activity monitoring and drug assessment in biofilms. IScience, 2021, 24, 102068.	4.1	17
7	Biogenesis of Outer Membrane Vesicles Concentrates the Unsaturated Fatty Acid of Phosphatidylinositol in Capnocytophaga ochracea. Frontiers in Microbiology, 2021, 12, 682685.	3.5	9
8	Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode. Environmental Research, 2021, 196, 110907.	7.5	23
9	MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system. Science of the Total Environment, 2021, 773, 145677.	8.0	21
10	Advances in the Synthesis and Application of Anti-Fouling Membranes Using Two-Dimensional Nanomaterials. Membranes, 2021, 11, 605.	3.0	9
11	A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chemical Engineering Journal, 2020, 381, 122687.	12.7	63
12	Mechanism of Anaerobic Microbial Corrosion Suppression by Mild Negative Cathodic Polarization on Carbon Steel. Environmental Science and Technology Letters, 2020, 7, 690-694.	8.7	8
13	Metabolic Current Production by an Oral Biofilm Pathogen Corynebacterium matruchotii. Molecules, 2020, 25, 3141.	3.8	14
14	A Human Pathogen <i>Capnocytophaga Ochracea</i> Exhibits Current Producing Capability. Electrochemistry, 2020, 88, 224-229.	1.4	9
15	Selectively enriched mixed sulfate-reducing bacteria for acrylamide biodegradation. International Journal of Environmental Science and Technology, 2020, 17, 4693-4702.	3.5	1
16	Microbial current production from Streptococcus mutans correlates with biofilm metabolic activity. Biosensors and Bioelectronics, 2020, 162, 112236.	10.1	25
17	Bioelectrochemical Systems: Principles and Applications. , 2020, , 1-33.		1
18	Investigating the role of anodic potential in the biodegradation of carbamazepine in bioelectrochemical systems. Science of the Total Environment, 2019, 688, 56-64.	8.0	20

WAHEED MIRAN

#	Article	IF	CITATIONS
19	Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 691-701.	1.5	11
20	Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells. Science of the Total Environment, 2018, 627, 1058-1065.	8.0	103
21	Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. Journal of Hazardous Materials, 2018, 352, 70-79.	12.4	69
22	Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution. Science of the Total Environment, 2018, 615, 698-707.	8.0	85
23	Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 2018, 344, 811-818.	12.4	159
24	Biosynthesized Iron Sulfide Nanocluster Enhanced Anodic Current Generation by Sulfate Reducing Bacteria in Microbial Fuel Cells. ChemElectroChem, 2018, 5, 4015-4020.	3.4	11
25	Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chemical Engineering Journal, 2018, 349, 748-755.	12.7	311
26	Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels. Carbohydrate Polymers, 2018, 199, 109-118.	10.2	56
27	Isolation and Characterization of Human Gut Bacteria Capable of Extracellular Electron Transport by Electrochemical Techniques. Frontiers in Microbiology, 2018, 9, 3267.	3.5	38
28	Stabilization of Pickering emulsion with surface-modified titanium dioxide for enhanced photocatalytic degradation of Direct Red 80. Catalysis Today, 2017, 282, 38-47.	4.4	25
29	Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances, 2017, 7, 9764-9771.	3.6	156
30	Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. Water Research, 2017, 117, 198-206.	11.3	56
31	Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Efficient Copper Removal from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 11481-11488.	6.7	319
32	Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere, 2017, 189, 134-142.	8.2	87
33	One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Applied Catalysis B: Environmental, 2017, 203, 85-95.	20.2	236
34	Effect of wastewater containing multi-walled carbon nanotubes on dual-chamber microbial fuel cell performance. RSC Advances, 2016, 6, 91314-91319.	3.6	7
35	Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Science of the Total Environment, 2016, 547, 197-205.	8.0	104
36	Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. International Biodeterioration and Biodegradation, 2016, 106, 75-79.	3.9	58

WAHEED MIRAN

#	Article	IF	CITATIONS
37	Simultaneous electricity production and Direct Red 80 degradation using a dual chamber microbial fuel cell. Desalination and Water Treatment, 2016, 57, 9051-9059.	1.0	19
38	Effect of toluene, an immiscible pollutant, on the photocatalytic degradation of azo dye. Journal of Industrial and Engineering Chemistry, 2015, 30, 10-13.	5.8	14
39	Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Environmental Science and Pollution Research, 2015, 22, 13477-13485.	5.3	64
40	Simultaneous Electricity Generation and Sirius Red Azo Dye Degradation Using Brewery Wastewater as Carbon Source in a Microbial Fuel Cell. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 559-564.	0.5	1