M I Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404931/publications.pdf

Version: 2024-02-01

		331670	377865
71	1,286	21	34
papers	citations	h-index	g-index
73	73	73	1327
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	FluidFM for single-cell biophysics. Nano Research, 2022, 15, 773-786.	10.4	33
2	Progress in Nanorobotics for Advancing Biomedicine. IEEE Transactions on Biomedical Engineering, 2021, 68, 130-147.	4.2	32
3	Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacologica Sinica, 2021, 42, 323-339.	6.1	43
4	Peak force tapping atomic force microscopy for advancing cell and molecular biology. Nanoscale, 2021, 13, 8358-8375.	5.6	20
5	Multiparametric atomic force microscopy imaging of single native exosomes. Acta Biochimica Et Biophysica Sinica, 2021, 53, 385-388.	2.0	13
6	Hierarchical Micro-/Nanotopography for Tuning Structures and Mechanics of Cells Probed by Atomic Force Microscopy. IEEE Transactions on Nanobioscience, 2021, 20, 543-553.	3.3	6
7	Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Transactions on Nanobioscience, 2020, 19, 78-99.	3.3	9
8	Nanoscale Organization and Functional Analysis of Carnivorous Plant Mucilage by Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2020, 19, 579-593.	2.0	3
9	Nanoscale imaging and mechanical analysis of viral infection on cells by atomic force microscopy. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1289-1292.	2.0	2
10	In Situ High-Resolution AFM Imaging and Force Probing of Cell Culture Medium-Forming Nanogranular Surfaces for Cell Growth. IEEE Transactions on Nanobioscience, 2020, 19, 385-393.	3.3	8
11	Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomaterials Science and Engineering, 2019, 5, 5036-5050.	5.2	17
12	Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering. IEEE Transactions on Nanobioscience, 2019, 18, 597-610.	3.3	9
13	Composite Nanostructures and Adhesion Analysis of Natural Plant Hydrogels Investigated by Atomic Force Microscopy. IEEE Transactions on Nanobioscience, 2019, 18, 448-455.	3.3	5
14	Nanoscale Multiparametric Imaging of Peptide-Assembled Nanofibrillar Hydrogels by Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2019, 18, 315-328.	2.0	9
15	Advances in atomic force microscopy for single-cell analysis. Nano Research, 2019, 12, 703-718.	10.4	66
16	Atomic Force Microscopy in Probing Tumor Physics for Nanomedicine. IEEE Nanotechnology Magazine, 2019, 18, 83-113.	2.0	24
17	Measurement and analysis of cellular viscoelastic properties using atomic force microscopy. Chinese Science Bulletin, 2019, 64, 1610-1619.	0.7	0
18	Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 193-201.	3.1	19

#	Article	IF	CITATIONS
19	A Review of Nanoscale Characterizing Individual DNA Behaviors Using Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2018, 17, 920-933.	2.0	9
20	Atomic force microscopy studies on cellular elastic and viscoelastic properties. Science China Life Sciences, 2018, 61, 57-67.	4.9	30
21	Introduction to Atomic Force Microscopy-Based Nanorobotics for Biomedical Applications. Springer Theses, 2018, , 1-20.	0.1	2
22	Immobilization Methods for Observing Living Mammalian Suspended Cells by AFM. Springer Theses, 2018, , 21-31.	0.1	0
23	Measuring the Mechanical Properties of Single Cells by AFM. Springer Theses, 2018, , 33-47.	0.1	0
24	Single-Molecule Recognition and Force Measurements by AFM. Springer Theses, 2018, , 49-64.	0.1	0
25	Mapping Membrane Proteins on Cell Surface by AFM. Springer Theses, 2018, , 65-77.	0.1	0
26	Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics. Springer Theses, 2018, , .	0.1	0
27	Applications of AFM Cellular and Molecular Biophysical Detection in Clinical Lymphoma Rituximab Treatment. Springer Theses, 2018, , 79-128.	0.1	0
28	Applications of Micro/Nano Automation Technology in Detecting Cancer Cells for Personalized Medicine. IEEE Nanotechnology Magazine, 2017, 16, 217-229.	2.0	25
29	The dynamic interactions between chemotherapy drugs and plasmid DNA investigated by atomic force microscopy. Science China Materials, 2017, 60, 269-278.	6.3	11
30	Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Transactions on Nanobioscience, 2017, 16, 523-540.	3.3	88
31	Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. Nanoscale, 2017, 9, 17643-17666.	5 . 6	39
32	A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Applied Materials & Interfaces, 2017, 9, 22160-22175.	8.0	127
33	Detecting the micro/nano physical properties of single lymphoma cells with atomic force microscopy. , 2017, , .		0
34	Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. Sensors, 2017, 17, 200.	3.8	26
35	Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation. IEEE Transactions on Nanobioscience, 2016, 15, 398-411.	3.3	33
36	Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. Journal of Biological Physics, 2016, 42, 551-569.	1.5	28

#	Article	IF	Citations
37	Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy. Journal of Immunological Methods, 2016, 436, 41-49.	1.4	11
38	Nanoscale Quantifying the Effects of Targeted Drug on Chemotherapy in Lymphoma Treatment Using Atomic Force Microscopy. IEEE Transactions on Biomedical Engineering, 2016, 63, 2187-2199.	4.2	22
39	Applications of Atomic Force Microscopy in Exploring Drug Actions in Lymphoma-Targeted Therapy at the Nanoscale. BioNanoScience, 2016, 6, 22-32.	3.5	6
40	Force curve classification using independent component analysis and support vector machine. , 2015, , .		0
41	Imaging and mapping individual target proteins on clinical lymphoma cells by AFM. , 2015, , .		1
42	Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacologica Sinica, 2015, 36, 769-782.	6.1	46
43	Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Transactions on Nanobioscience, 2015, 14, 84-94.	3.3	25
44	Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy. Science China Life Sciences, 2015, 58, 889-901.	4.9	21
45	Biological Applications of a Nanomanipulator Based on AFM: In situ visualization and quantification of cellular behaviors at the single-molecule level. IEEE Nanotechnology Magazine, 2015, 9, 25-35.	1.3	8
46	Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy. Science Bulletin, 2014, 59, 4020-4029.	1.7	20
47	Nanoscale distribution of CD20 on Bâ€cell lymphoma tumour cells and its potential role in the clinical efficacy of rituximab. Journal of Microscopy, 2014, 254, 19-30.	1.8	17
48	Progress in measuring biophysical properties of membrane proteins with AFM single-molecule force spectroscopy. Science Bulletin, 2014, 59, 2717-2725.	1.7	13
49	AFM analysis of the multiple types of molecular interactions involved in rituximab lymphoma therapy on patient tumor cells and NK cells. Cellular Immunology, 2014, 290, 233-244.	3.0	19
50	Nanoscale Imaging and Mechanical Analysis of Fc Receptor-Mediated Macrophage Phagocytosis against Cancer Cells. Langmuir, 2014, 30, 1609-1621.	3.5	45
51	Progress of AFM single-cell and single-molecule morphology imaging. Science Bulletin, 2013, 58, 3177-3182.	1.7	15
52	Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Science Bulletin, 2013, 58, 1516-1519.	1.7	8
53	Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy. Biochemical and Biophysical Research Communications, 2013, 438, 709-714.	2.1	16
54	Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Experimental Cell Research, 2013, 319, 2812-2821.	2.6	27

#	Article	IF	Citations
55	Investigating the morphology and mechanical properties of blastomeres with atomic force microscopy. Surface and Interface Analysis, 2013, 45, 1193-1196.	1.8	5
56	Atomic force microscopy imaging of live mammalian cells. Science China Life Sciences, 2013, 56, 811-817.	4.9	18
57	Imaging and Measuring the Molecular Force of Lymphoma Pathological Cells Using Atomic Force Microscopy. Scanning, 2013, 35, 40-46.	1.5	5
58	Atomic force microscopy study of the antigenâ€antibody binding force on patient cancer cells based on ROR1 fluorescence recognition. Journal of Molecular Recognition, 2013, 26, 432-438.	2.1	37
59	Investigation of Protein–Protein Interactions in Cancer Targeted Therapy Using Nanorobots. , 2013, , 125-158.		1
60	A Fully Automated System for Measuring Cellular Mechanical Properties. Journal of the Association for Laboratory Automation, 2012, 17, 443-448.	2.8	14
61	Investigating the relationship between CD20-Rituximab binding force and mechanical properties of Lymphom B cells using atomic force microscopy. , 2012, , .		0
62	Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Science China Life Sciences, 2012, 55, 968-973.	4.9	77
63	Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochemical and Biophysical Research Communications, 2011, 404, 689-694.	2.1	46
64	Detecting CD20-Rituximab interaction forces using AFM single-molecule force spectroscopy. Science Bulletin, 2011, 56, 3829-3835.	1.7	14
65	Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy. Science China Life Sciences, 2010, 53, 1189-1195.	4.9	6
66	Stiffness Measurement of Burkitt's Lymphoma Cells with Atomic Force Microscopy. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
67	Measuring the physical properties of the lymphoma cells using atomic force microscopy. , 2010, , .		1
68	An experimental study on imaging burkitt's lymphoma cells by atomic force microscope. , 2010, , .		0
69	Measuring the molecular force of Burkitt's lymphoma patient cells using AFM. , 2010, , .		0
70	An experimental study on protein-protein interaction using atomic force microscopy. , 2010, , .		0
71	Imaging and measuring the mechanical properties of lymphoma cells using atomic force microscopy. Chinese Science Bulletin, 2010, 55, 2188-2196.	0.7	6