Saeed M Ghazani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404531/publications.pdf

Version: 2024-02-01

686830 525886 27 770 13 27 citations h-index g-index papers 28 28 28 859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minor Components in Canola Oil and Effects of Refining on These Constituents: A Review. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 923-932.	0.8	115
2	Quality and safety of frying oils used in restaurants. Food Research International, 2014, 64, 420-423.	2.9	99
3	Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International, 2019, 116, 79-89.	2.9	76
4	Micronutrient content of coldâ€pressed, hotâ€pressed, solvent extracted and RBD canola oil: Implications for nutrition and quality. European Journal of Lipid Science and Technology, 2014, 116, 380-387.	1.0	74
5	Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. Journal of Supercritical Fluids, 2018, 133, 122-132.	1.6	64
6	Minor Constituents in Canola Oil Processed by Traditional and Minimal Refining Methods. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 743-756.	0.8	55
7	Microbial lipids for foods. Trends in Food Science and Technology, 2022, 119, 593-607.	7.8	37
8	The Ternary Solid State Phase Behavior of Triclinic POP, POS, and SOS and Its Relationship to CB and CBE Properties. Crystal Growth and Design, 2019, 19, 704-713.	1.4	25
9	Tempering of cocoa butter and chocolate using minor lipidic components. Nature Communications, 2021, 12, 5018.	5.8	23
10	Molecular Origins of Polymorphism in Cocoa Butter. Annual Review of Food Science and Technology, 2021, 12, 567-590.	5.1	21
11	Facile lipase-catalyzed synthesis of a chocolate fat mimetic. Scientific Reports, 2018, 8, 15271.	1.6	16
12	Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants. Food and Function, 2019, 10, 8195-8207.	2.1	16
13	The Triclinic Polymorphism of Cocoa Butter Is Dictated by Its Major Molecular Species, 1-Palmitoyl, 2-Oleoyl, 3-Stearoyl Glycerol (POS). Crystal Growth and Design, 2019, 19, 90-97.	1.4	16
14	New Insights into the \hat{l}^2 Polymorphism of 1,3-Palmitoyl-stearoyl-2-oleoyl Glycerol. Crystal Growth and Design, 2018, 18, 4811-4814.	1.4	15
15	Heterogeneous Nucleation of 1,3-Distearoyl-2-oleoylglycerol on Tristearin Surfaces. ACS Omega, 2019, 4, 6273-6282.	1.6	14
16	Hardness, plasticity, and oil binding capacity of binary mixtures of natural waxes in olive oil. Current Research in Food Science, 2022, 5, 998-1008.	2.7	14
17	Natural emulsion gels and lecithin-based sorbents: A potential treatment method for organic spills on surface waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 245-259.	2.3	13
18	Avocado-derived polyols for use as novel co-surfactants in low energy self-emulsifying microemulsions. Scientific Reports, 2020, 10, 5566.	1.6	13

#	Article	IF	Citations
19	Algal Butter, a Novel Cocoa Butter Equivalent: Chemical Composition, Physical Properties, and Functionality in Chocolate. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1239-1251.	0.8	12
20	Molecular motifs encoding self-assembly of peptide fibers into molecular gels. Soft Matter, 2019, 15, 9205-9214.	1.2	12
21	Effect of Toluene and Hexane Sorption on the Rheology and Interfacial Properties of Lecithin-Based Emulsion Gels. Langmuir, 2020, 36, 1484-1495.	1.6	11
22	A †three in one' complexing agent enables copper desorption from polluted soil, its removal from groundwater and its detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126840.	2.3	9
23	The Stability and Nature of the Form IV Polymorph of Cocoa Butter Is Dictated by 1-Palmitoyl-2-Oleoyl-3-Stearoyl-Glycerol. Crystal Growth and Design, 2019, 19, 1488-1493.	1.4	8
24	Novel Cocoa Butter Equivalent from Microalgal Butters. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1095-1104.	0.8	4
25	Perspective: A commentary on elevated palmitic acid levels in Canadian butter and their relationship to butter hardness. Journal of Dairy Science, 2021, 104, 9380-9382.	1.4	3
26	Higher palmitic acid and dipalmitoyloleate levels are correlated to increased firmness in commercial butter. Food Chemistry, 2022, 377, 131991.	4.2	3
27	Data deficits and transparency: What led to Canada's †buttergate'. Trends in Food Science and Technology, 2022, , .	7.8	2