Raquel Seiça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404487/publications.pdf Version: 2024-02-01

ΡΛΟΠΕΙ SΕΙÃ8Λ

#	Article	IF	CITATIONS
1	Endothelial dysfunction — A major mediator of diabetic vascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2216-2231.	3.8	601
2	Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer, 2018, 18, 29.	2.6	177
3	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	9.9	168
4	Vascular Oxidative Stress: Impact and Therapeutic Approaches. Frontiers in Physiology, 2018, 9, 1668.	2.8	158
5	Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. Journal of the Neurological Sciences, 2007, 257, 206-214.	0.6	154
6	Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes. Theriogenology, 2006, 66, 2056-2067.	2.1	145
7	Subcutaneous delivery of monoclonal antibodies: How do we get there?. Journal of Controlled Release, 2018, 286, 301-314.	9.9	138
8	Methylglyoxal, obesity, and diabetes. Endocrine, 2013, 43, 472-484.	2.3	137
9	Increased Vulnerability of Brain Mitochondria in Diabetic (Goto-Kakizaki) Rats With Aging and Amyloid-Â Exposure. Diabetes, 2003, 52, 1449-1456.	0.6	111
10	Metformin Protects the Brain Against the Oxidative Imbalance Promoted by Type 2 Diabetes. Medicinal Chemistry, 2008, 4, 358-364.	1.5	96
11	Mechanisms of Action of Metformin in Type 2 Diabetes and Associated Complications: An Overview. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1343-1354.	2.4	85
12	Insulin protects against amyloid β-peptide toxicity in brain mitochondria of diabetic rats. Neurobiology of Disease, 2005, 18, 628-637.	4.4	82
13	CoQ10 therapy attenuates amyloid \hat{l}^2 -peptide toxicity in brain mitochondria isolated from aged diabetic rats. Experimental Neurology, 2005, 196, 112-119.	4.1	82
14	Metformin promotes isolated rat liver mitochondria impairment. Molecular and Cellular Biochemistry, 2008, 308, 75-83.	3.1	82
15	Irisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk. Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	82
16	Preparation methods and applications behind alginate-based particles. Expert Opinion on Drug Delivery, 2017, 14, 769-782.	5.0	79
17	Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Letters, 2003, 554, 511-514.	2.8	72
18	Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 942-951.	3.8	71

#	Article	IF	CITATIONS
19	Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines. Metabolic Brain Disease, 2014, 29, 563-568.	2.9	69
20	Brain and liver mitochondria isolated from diabeticGoto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes/Metabolism Research and Reviews, 2001, 17, 223-230.	4.0	68
21	Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Medicinal Research Reviews, 2017, 37, 368-403.	10.5	67
22	Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 113-120.	3.8	53
23	Enhanced mitochondrial testicular antioxidant capacity in Goto-Kakizaki diabetic rats: role of coenzyme Q. American Journal of Physiology - Cell Physiology, 2001, 281, C1023-C1028.	4.6	52
24	The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis. PLoS Computational Biology, 2015, 11, e1004436.	3.2	52
25	Diabetes and mitochondrial bioenergetics: Alterations with age. Journal of Biochemical and Molecular Toxicology, 2003, 17, 214-222.	3.0	49
26	Diabetes mellitus: new challenges and innovative therapies. EPMA Journal, 2010, 1, 138-163.	6.1	48
27	Oxidative Stress Affects Synaptosomal Â-Aminobutyric Acid and Glutamate Transport in Diabetic Rats: The Role of Insulin. Diabetes, 2004, 53, 2110-2116.	0.6	47
28	Hyperresistinemia and metabolic dysregulation: a risky crosstalk in obese breast cancer. Endocrine, 2016, 53, 433-442.	2.3	46
29	Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver. Diabetologia, 2017, 60, 158-168.	6.3	45
30	Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Scientific Reports, 2017, 7, 1698.	3.3	41
31	Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radical Biology and Medicine, 2020, 146, 264-274.	2.9	41
32	Why most oral insulin formulations do not reach clinical trials. Therapeutic Delivery, 2015, 6, 973-987.	2.2	39
33	Insulin affects synaptosomal GABA and glutamate transport under oxidative stress conditions. Brain Research, 2003, 977, 23-30.	2.2	37
34	Mitochondria from distinct tissues are differently affected by 17β-estradiol and tamoxifen. Journal of Steroid Biochemistry and Molecular Biology, 2011, 123, 8-16.	2.5	36
35	Dyslipidemia and cardiovascular changes in children. Current Opinion in Cardiology, 2016, 31, 95-100.	1.8	33
36	Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. International Journal of Nanomedicine, 2015, 10, 5865.	6.7	31

#	Article	IF	CITATIONS
37	Function and Dysfunction of Adipose Tissue. Advances in Neurobiology, 2017, 19, 3-31.	1.8	31
38	Subcutaneous delivery of biotherapeutics: challenges at the injection site. Expert Opinion on Drug Delivery, 2019, 16, 143-151.	5.0	31
39	Insulin Resistance, Dyslipidemia and Cardiovascular Changes in a Group of Obese Children. Arquivos Brasileiros De Cardiologia, 2014, 104, 266-73.	0.8	30
40	Advanced glycation end products and diabetic nephropathy: a comparative study using diabetic and normal rats with methylglyoxal-induced glycation. Journal of Physiology and Biochemistry, 2014, 70, 173-184.	3.0	30
41	Impact of STZâ€induced hyperglycemia and insulinâ€induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse, 2011, 65, 457-466.	1.2	29
42	Lipoic Acid Prevents High-Fat Diet-Induced Hepatic Steatosis in Goto Kakizaki Rats by Reducing Oxidative Stress Through Nrf2 Activation. International Journal of Molecular Sciences, 2018, 19, 2706.	4.1	28
43	Reduction of Methylglyoxal-Induced Glycation by Pyridoxamine Improves Adipose Tissue Microvascular Lesions. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	27
44	Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Frontiers in Neuroendocrinology, 2019, 52, 1-11.	5.2	25
45	Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Molecular and Cellular Biochemistry, 2003, 246, 163-70.	3.1	25
46	In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 88-96.	4.3	24
47	Omentin: A novel therapeutic approach for the treatment of endothelial dysfunction in type 2 diabetes. Free Radical Biology and Medicine, 2021, 162, 233-242.	2.9	22
48	Effect of Oxidative Stress on the Uptake of GABA and Glutamate in Synaptosomes Isolated from Diabetic Rat Brain. Neuroendocrinology, 2000, 72, 179-186.	2.5	21
49	Estradiol affects liver mitochondrial function in ovariectomized and tamoxifen-treated ovariectomized female rats. Toxicology and Applied Pharmacology, 2007, 221, 102-110.	2.8	21
50	Methylglyoxal further impairs adipose tissue metabolism after partial decrease of blood supply. Archives of Physiology and Biochemistry, 2013, 119, 209-218.	2.1	21
51	Intestinal Uptake of Insulin Nanoparticles: Facts or Myths?. Current Pharmaceutical Biotechnology, 2014, 15, 629-638.	1.6	21
52	Cardiovascular Risk and Sudden Sensorineural Hearing Loss: A Systematic Review and <scp>Metaâ€Analysis</scp> . Laryngoscope, 2023, 133, 15-24.	2.0	21
53	Pyridoxamine Reverts Methylglyoxalâ€induced Impairment of Survival Pathways During Heart Ischemia. Cardiovascular Therapeutics, 2013, 31, e79-85.	2.5	20
54	GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacological Research, 2020, 161, 105198.	7.1	20

#	Article	IF	CITATIONS
55	Disruption of Mitochondrial Calcium Homeostasis after Chronic α-Naphthylisothiocyanate Administration: Relevance for Cholestasis. Journal of Investigative Medicine, 2002, 50, 193-200.	1.6	19
56	Pro-inflammatory triggers in childhood obesity: Correlation between leptin, adiponectin and high-sensitivity C-reactive protein in a group of obese Portuguese children. Revista Portuguesa De Cardiologia, 2014, 33, 691-697.	0.5	18
57	Association between Adipokines and Biomarkers of Alzheimer's Disease: A Cross-Sectional Study. Journal of Alzheimer's Disease, 2019, 67, 725-735.	2.6	18
58	Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with α-naphthyl-isothiocyanate (ANIT). Toxicology, 2003, 190, 185-196.	4.2	17
59	Calcium-dependent mitochondrial permeability transition is augmented in the kidney of Goto-Kakizaki diabetic rat. Diabetes/Metabolism Research and Reviews, 2004, 20, 131-136.	4.0	16
60	The Role of Brain in Energy Balance. Advances in Neurobiology, 2017, 19, 33-48.	1.8	16
61	Neuroendocrinology of Adipose Tissue and Gut–Brain Axis. Advances in Neurobiology, 2017, 19, 49-70.	1.8	16
62	Diabesity and Brain Energy Metabolism: The Case of Alzheimer's Disease. Advances in Neurobiology, 2017, 19, 117-150.	1.8	16
63	Vitamin E or coenzyme Q10 administration is not fully advantageous for heart mitochondrial function in diabetic goto kakizaki rats. Mitochondrion, 2004, 3, 337-345.	3.4	15
64	Glucagon secretion after metabolic surgery in diabetic rodents. Journal of Endocrinology, 2014, 223, 255-265.	2.6	15
65	Highâ€fat diet induces a neurometabolic state characterized by changes in glutamate and Nâ€acetylaspartate pools associated with early glucose intolerance: An in vivo multimodal MRI study. Journal of Magnetic Resonance Imaging, 2018, 48, 757-766.	3.4	15
66	Synaptosomes isolated from Goto-Kakizaki diabetic rat brain exhibit increased resistance to oxidative stress. Life Sciences, 2000, 67, 3061-3073.	4.3	14
67	Impact of the in vitro gastrointestinal passage of biopolymer-based nanoparticles on insulin absorption. RSC Advances, 2016, 6, 20155-20165.	3.6	14
68	Glycation and Hypoxia: Two Key Factors for Adipose Tissue Dysfunction. Current Medicinal Chemistry, 2015, 22, 2417-2437.	2.4	14
69	Chronic Hypoxia Potentiates Age-Related Oxidative Imbalance in Brain Vessels and Synaptosomes. Current Neurovascular Research, 2010, 7, 288-300.	1.1	14
70	Susceptibility to β-Amyloid-Induced Toxicity Is Decreased in Goto-Kakizaki Diabetic Rats: Involvement of Oxidative Stress. Experimental Neurology, 2000, 161, 383-391.	4.1	13
71	Dietary restriction improves systemic and muscular oxidative stress in type 2 diabetic Goto–Kakizaki rats. Journal of Physiology and Biochemistry, 2011, 67, 613-619.	3.0	13
72	Improved Efficiency of Hepatic Mitochondrial Function in Rats with Cholestasis Induced by an Acute Dose of α-Naphthylisothiocyanate. Toxicology and Applied Pharmacology, 2002, 182, 20-26.	2.8	11

#	Article	IF	CITATIONS
73	Childhood adiposity: being male is a potential cardiovascular risk factor. European Journal of Pediatrics, 2016, 175, 63-69.	2.7	11
74	Beneficial effects of dietary restriction in type 2 diabetic rats: the role of adipokines on inflammation and insulin resistance. British Journal of Nutrition, 2010, 104, 76-82.	2.3	10
75	Effect of Sleeve Gastrectomy on Angiogenesis and Adipose Tissue Health in an Obese Animal Model of Type 2 Diabetes. Obesity Surgery, 2019, 29, 2942-2951.	2.1	10
76	Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA Journal, 2022, 13, 209-235.	6.1	10
77	Reduction in cardiac mitochondrial calcium loading capacityÂis observableÂduring α-naphthylisothiocyanate-induced acute cholestasis: a clue for hepatic-derived cardiomyopathies?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1637, 39-45.	3.8	9
78	Intermedin elicits a negative inotropic effect in rat papillary muscles mediated by endothelial-derived nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1131-H1137.	3.2	9
79	A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Archives of Physiology and Biochemistry, 2014, 120, 1-11.	2.1	9
80	Circulating endothelial progenitor cells in obese children and adolescents. Jornal De Pediatria, 2015, 91, 560-566.	2.0	9
81	ECM-enriched alginate hydrogels for bioartificial pancreas: an ideal niche to improve insulin secretion and diabetic glucose profile. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001984892.	1.6	9
82	<i>Acrocomia aculeata</i> (Jacq.) Lodd. ex Mart. Leaves Increase SIRT1 Levels and Improve Stress Resistance. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	4.0	9
83	Hypoglycaemic and Antioxidant Properties of Acrocomia aculeata (Jacq.) Lodd Ex Mart. Extract Are Associated with Better Vascular Function of Type 2 Diabetic Rats. Nutrients, 2021, 13, 2856.	4.1	9
84	Distinct Impact of Natural Sugars from Fruit Juices and Added Sugars on Caloric Intake, Body Weight, Glycaemia, Oxidative Stress and Glycation in Diabetic Rats. Nutrients, 2021, 13, 2956.	4.1	9
85	Pro-inflammatory triggers in childhood obesity: Correlation between leptin, adiponectin and high-sensitivity C-reactive protein in a group of obese Portuguese children. Revista Portuguesa De Cardiologia (English Edition), 2014, 33, 691-697.	0.2	8
86	Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. Journal of Functional Foods, 2017, 34, 329-339.	3.4	7
87	Increasing levels of insulin secretion in bioartificial pancreas technology: co-encapsulation of beta cells and nanoparticles containing GLP-1 in alginate hydrogels. Health and Technology, 2020, 10, 885-890.	3.6	5
88	Vascular mechanisms in acute unilateral peripheral vestibulopathy: a systematic review. Acta Otorhinolaryngologica Italica, 2021, 41, 401-409.	1.5	5
89	The Effect of Soybean Oil on Glycaemic Control in Goto-Kakizaki Rats,an Animal Model of Type 2 Diabetes. Medicinal Chemistry, 2008, 4, 293-297.	1.5	4
90	Multiparticulate Systems of Ezetimibe Micellar System and Atorvastatin Solid Dispersion Efficacy of Low-Dose Ezetimibe/Atorvastatin on High-Fat Diet-Induced Hyperlipidemia and Hepatic Steatosis in Diabetic Rats. Pharmaceutics, 2021, 13, 421.	4.5	4

#	Article	IF	CITATIONS
91	Kinetics of radium-223 and its effects on survival, proliferation and DNA damage in lymph-node and bone metastatic prostate cancer cell lines. International Journal of Radiation Biology, 2021, 97, 714-726.	1.8	4
92	Impairment of the angiogenic process may contribute to lower success rate of root canal treatments in diabetes mellitus. International Endodontic Journal, 2021, 54, 1687-1698.	5.0	4
93	Diabetes and mitochondrial oxidative stress: A study using heart mitochondria from the diabetic Goto-Kakizaki rat. , 2003, , 163-170.		4
94	Mitochondrial Function Is Not Affected by Renal Morphological Changes in Diabetic Goto-Kakizaki Rat. Toxicology Mechanisms and Methods, 2005, 15, 253-261.	2.7	3
95	Myocardial peak systolic velocity—a tool for cardiac screening of HIV-exposed uninfected children. European Journal of Pediatrics, 2020, 179, 395-404.	2.7	3
96	Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats. International Journal of Molecular Sciences, 2021, 22, 13671.	4.1	3
97	Improvement of Glycaemia and Endothelial Function by a New Low-Dose Curcuminoid in an Animal Model of Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 5652.	4.1	3
98	Mitochondrial Bioenergetics, Diabetes, and Aging: Top-Down Analysis Using the Diabetic Goto-Kakizaki (GK) Rat as a Model. Toxicology Mechanisms and Methods, 2006, 16, 323-330.	2.7	2
99	Teduglutide effects on gene regulation of fibrogenesis on an animal model of intestinal anastomosis. Journal of Surgical Research, 2017, 216, 87-98.	1.6	2
100	Intestinal inflammatory and redox responses to the perioperative administration of teduglutide in rats. Acta Cirurgica Brasileira, 2017, 32, 648-661.	0.7	2
101	Intestinal Epithelial Stem Cells: Distinct Behavior After Surgical Injury and Teduglutide Administration. Journal of Investigative Surgery, 2018, 31, 243-252.	1.3	2
102	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases. Frontiers in Physiology, 2019, 10, 788.	2.8	2
103	A rat model of enhanced glycation mimics cardiac phenotypic components of human type 2 diabetes : A translational study using MRI. Journal of Diabetes and Its Complications, 2020, 34, 107554.	2.3	1
104	Atherosclerotic Process in Seroreverter Children and Adolescents Exposed to Fetal Antiretroviral Therapy. Current HIV Research, 2021, 19, 216-224.	0.5	1
105	Effects of teduglutide on histological parameters of intestinal anastomotic healing. European Surgery - Acta Chirurgica Austriaca, 2017, 49, 218-227.	0.7	0
106	Teaching muscle physiology to medical students. FASEB Journal, 2008, 22, 177-177.	0.5	0
107	Lipoic acid prevents highâ€fat dietâ€induced hepatic steatosis in Goto Kakizaki rats. FASEB Journal, 2008, 22, 134-134.	0.5	0
108	Distinct Impact of Natural Sugars from Fruit Juices and Added Sugars on Caloric Intake, Body Weight, Glycaemia, Oxidative Stress and Glycation in Diabetic Rats, Nutrients, 2021, 13,	4.1	0

#	Article	IF	CITATIONS
109	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases, Volume II. Frontiers in Physiology, 2021, 12, 826129.	2.8	0