Liang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404254/publications.pdf

Version: 2024-02-01

174	9,730	54	89
papers	citations	h-index	g-index
177	177 docs citations	177	7275
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen bonding assisted OHâ^' transport under low humidity for rapid start-up in AEMFCs. Journal of Membrane Science, 2022, 647, 120303.	8.2	15
2	Bipolar membrane-assisted reverse electrodialysis for high power density energy conversion via acid-base neutralization. Journal of Membrane Science, 2022, 647, 120288.	8.2	19
3	èšç"µè§£è^;¢‡ƒæ−™ç"µæ±ä¸çš"è^åäëºæ¢è†œç"究进展. Chinese Science Bulletin, 2022, , .	0.7	1
4	On-demand synthesis of high-quality, blue-light-active ZnSe colloidal quantum wires. National Science Review, 2022, 9, .	9 . 5	3
5	Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Industrial & Engineering Chemistry Research, 2022, 61, 4329-4338.	3.7	14
6	Efficient lamellar twoâ€dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane. AICHE Journal, 2022, 68, .	3.6	8
7	Current Challenges and Perspectives of Polymer Electrolyte Membranes. Macromolecules, 2022, 55, 3773-3787.	4.8	45
8	Metallic Carbonitride MXene Based Photonic Hyperthermia for Tumor Therapy. Small, 2022, 18, e2200646.	10.0	16
9	Host-guest interaction induced ion channels for accelerated OHâ^' transport in anion exchange membranes. Journal of Membrane Science, 2022, 655, 120580.	8.2	15
10	High-performance bipolar membrane for electrochemical water electrolysis. Journal of Membrane Science, 2022, 656, 120660.	8.2	11
11	Highly conductive and vanadium sieving Microporous Tröger's Base Membranes for vanadium redox flow battery. Journal of Membrane Science, 2021, 620, 118832.	8.2	48
12	Reshaping the Cathodic Catalyst Layer for Anion Exchange Membrane Fuel Cells: From Heterogeneous Catalysis to Homogeneous Catalysis. Angewandte Chemie, 2021, 133, 4095-4100.	2.0	2
13	Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 327-337.	10.3	116
14	Reshaping the Cathodic Catalyst Layer for Anion Exchange Membrane Fuel Cells: From Heterogeneous Catalysis to Homogeneous Catalysis. Angewandte Chemie - International Edition, 2021, 60, 4049-4054.	13.8	19
15	Introducing a new generation of anion conducting membrane using swelling induced fabrication of covalent methanol barrier layer. Journal of Membrane Science, 2021, 620, 118840.	8.2	4
16	Ion Exchange Membrane " <scp>ABC</scp> ―– A Key Material for Upgrading Process Industries. Chinese Journal of Chemistry, 2021, 39, 825-837.	4.9	8
17	Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9.	12.8	49
18	Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast <scp>OH</scp> ^{â²'} conduction. AICHE Journal, 2021, 67, e17133.	3.6	53

#	Article	IF	Citations
19	A Review of Nanostructured Ionâ€Exchange Membranes. Advanced Materials Technologies, 2021, 6, 2001171.	5.8	25
20	One-Dimensional Superlattice Heterostructure Library. Journal of the American Chemical Society, 2021, 143, 7013-7020.	13.7	16
21	Biselective microporous TrÓ§ger's base membrane for effective ion separation. Journal of Membrane Science, 2021, 627, 119246.	8.2	19
22	Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. Nature Communications, 2021, 12, 4296.	12.8	23
23	Poly (5-aminoindole)–modified TiO2NTs nanocomposites supported palladium as an anode catalyst for enhanced electrocatalytic oxidation of methanol. Electrochimica Acta, 2021, 388, 138562.	5.2	7
24	Flexible Bis-piperidinium Side Chains Construct Highly Conductive and Robust Anion-Exchange Membranes. ACS Applied Energy Materials, 2021, 4, 9701-9711.	5.1	34
25	Fast Bulky Anion Conduction Enabled by Free Shuttling Phosphonium Cations. Research, 2021, 2021, 9762709.	5 . 7	11
26	Manipulating the Electronic Structure of Nickel <i>via</i> Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na–S Batteries. ACS Nano, 2021, 15, 15218-15228.	14.6	64
27	Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. Journal of Membrane Science, 2021, 634, 119404.	8.2	51
28	Status and Challenges of Cathode Materials for Roomâ€Temperature Sodiumâ€"Sulfur Batteries. Small Science, 2021, 1, 2100059.	9.9	28
29	Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. Journal of Membrane Science, 2021, 637, 119650.	8.2	13
30	In-situ grown polyaniline catalytic interfacial layer improves water dissociation in bipolar membranes. Separation and Purification Technology, 2021, 275, 119167.	7.9	12
31	3Dâ€Zipped Interface: In Situ Covalent‣ocking for High Performance of Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2102637.	11.2	21
32	Enhancing side chain swing ability by novel all-carbon twisted backbone for high performance anion exchange membrane at relatively low IEC level., 2021, 1, 100007.		7
33	Preparation of click-driven cross-linked anion exchange membranes with low water uptake. Particuology, 2020, 48, 65-73.	3.6	13
34	Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain. Journal of Membrane Science, 2020, 595, 117483.	8.2	48
35	Covalent bonding-triggered pore-filled membranes for alkaline fuel cells. Journal of Membrane Science, 2020, 597, 117776.	8.2	9
36	Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation. Journal of Membrane Science, 2020, 614, 118553.	8.2	29

#	Article	lF	CITATIONS
37	Band Structure Engineering toward Low-Onset-Potential Photoelectrochemical Hydrogen Production., 2020, 2, 1555-1560.		13
38	Axially Segmented Semiconductor Heteronanowires. Accounts of Materials Research, 2020, 1, 126-136.	11.7	12
39	Preparation and Chemical Protective Clothing Application of PVDF Based Sodium Sulfonate Membrane. Membranes, 2020, 10, 190.	3.0	11
40	Beneficial Use of a Coordination Complex As the Junction Catalyst in a Bipolar Membrane. ACS Applied Energy Materials, 2020, 3, 5765-5773.	5.1	25
41	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie, 2020, 132, 9651-9660.	2.0	20
42	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie - International Edition, 2020, 59, 9564-9573.	13.8	145
43	Ammonia capture from wastewater with a high ammonia nitrogen concentration by water splitting and hollow fiber extraction. Chemical Engineering Science, 2020, 227, 115934.	3.8	31
44	Anti-photocorrosive photoanode with RGO/PdS as hole extraction layer. Science China Materials, 2020, 63, 1939-1947.	6.3	8
45	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	2.0	20
46	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	13.8	47
47	Ionomer Cross-Linking Immobilization of Catalyst Nanoparticles for High Performance Alkaline Membrane Fuel Cells. Chemistry of Materials, 2019, 31, 7812-7820.	6.7	57
48	Comb-shaped anion exchange membrane with densely grafted short chains or loosely grafted long chains?. Journal of Membrane Science, 2019, 585, 150-156.	8.2	52
49	A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. CheM, 2019, 5, 1861-1870.	11.7	196
50	Angioplasty mimetic stented ion transport channels construct durable high-performance membranes. Journal of Materials Chemistry A, 2019, 7, 10030-10040.	10.3	12
51	Self-healing anion exchange membrane for pH 7 redox flow batteries. Chemical Engineering Science, 2019, 201, 167-174.	3.8	19
52	Highly conductive anion exchange membranes based on one-step benzylation modification of poly(ether ether ketone). Journal of Membrane Science, 2019, 574, 205-211.	8.2	43
53	Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption. Journal of Membrane Science, 2019, 570-571, 245-257.	8.2	81
54	Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction. Science China Materials, 2019, 62, 973-981.	6.3	18

#	Article	IF	Citations
55	Tetrazole tethered polymers for alkaline anion exchange membranes. Frontiers of Chemical Science and Engineering, 2018, 12, 306-310.	4.4	11
56	Anion exchange membranes with branched ionic clusters for fuel cells. Journal of Materials Chemistry A, 2018, 6, 5993-5998.	10.3	70
57	A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Grapheneâ€Based Fibers. Advanced Materials, 2018, 30, e1706435.	21.0	138
58	Anion exchange membranes with clusters of alkyl ammonium group for mitigating water swelling but not ionic conductivity. Journal of Membrane Science, 2018, 550, 101-109.	8.2	54
59	Achieving high anion conductivity by densely grafting of ionic strings. Journal of Membrane Science, 2018, 559, 35-41.	8.2	38
60	Anion exchange membrane crosslinked in the easiest way stands out for fuel cells. Journal of Power Sources, 2018, 390, 234-241.	7.8	74
61	Recyclable cross-linked anion exchange membrane for alkaline fuel cell application. Journal of Power Sources, 2018, 375, 404-411.	7.8	53
62	Perylene-based sulfonated aliphatic polyimides for fuel cell applications: Performance enhancement by stacking of polymer chains. Journal of Membrane Science, 2018, 547, 43-50.	8.2	39
63	A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers. Journal of Membrane Science, 2018, 549, 631-637.	8.2	33
64	Electrodialytic concentrating lithium salt from primary resource. Desalination, 2018, 425, 30-36.	8.2	45
65	A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability. Journal of Materials Chemistry A, 2018, 6, 527-534.	10.3	101
66	Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy and Environmental Science, 2018, 11, 3472-3479.	30.8	196
67	Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nature Communications, 2018, 9, 4947.	12.8	22
68	Ammonia capture by water splitting and hollow fiber extraction. Chemical Engineering Science, 2018, 192, 211-217.	3.8	25
69	Monovalent cations permselective membranes with zwitterionic side chains. Journal of Membrane Science, 2018, 563, 320-325.	8.2	48
70	Thermally triggered polyrotaxane translational motion helps proton transfer. Nature Communications, 2018, 9, 2297.	12.8	24
71	Role of ionomer in membrane electrode assembly for proton exchange membrane fuel cells. Scientia Sinica Chimica, 2018, 48, 1040-1057.	0.4	5
72	Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein. Separation and Purification Technology, 2017, 178, 269-278.	7.9	47

#	Article	IF	CITATIONS
73	Crosslinked PVA-based hybrid membranes containing di-sulfonic acid groups for alkali recovery. Separation and Purification Technology, 2017, 184, 1-11.	7.9	15
74	Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation. Journal of Membrane Science, 2017, 537, 32-41.	8.2	30
75	Click mediated high-performance anion exchange membranes with improved water uptake. Journal of Materials Chemistry A, 2017, 5, 1022-1027.	10.3	39
76	Preparation and characterization of click-driven N-vinylcarbazole-based anion exchange membranes with improved water uptake for fuel cells. RSC Advances, 2017, 7, 29794-29805.	3.6	18
77	Novel synthetic route to prepare doubly quaternized anion exchange membranes for diffusion dialysis application. Separation and Purification Technology, 2017, 189, 204-212.	7.9	27
78	Preparation of bipolar membranes by electrospinning. Materials Chemistry and Physics, 2017, 186, 484-491.	4.0	39
79	lon exchange membranes: New developments and applications. Journal of Membrane Science, 2017, 522, 267-291.	8.2	650
80	Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis. Desalination, 2017, 402, 10-18.	8.2	88
81	Improved acid recovery performance by novel Poly(DMAEM-co- \hat{l}^3 -MPS) anion exchange membrane via diffusion dialysis. Journal of Membrane Science, 2017, 525, 163-174.	8.2	49
82	Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazole)s for Fuel Cell Applications. Polymers, 2017, 9, 631.	4.5	14
83	Largeâ€Scale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie - International Edition, 2016, 55, 8328-8332.	13.8	243
84	Preparation of Highly Oriented Polyethylene Precursor Film with Fibril and Its Influence on Microporous Membrane Formation. Macromolecular Chemistry and Physics, 2016, 217, 974-986.	2.2	12
85	Largeâ€Scale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie, 2016, 128, 8468-8472.	2.0	33
86	Alkaline Anionâ€Exchange Membranes Containing Mobile Ion Shuttles. Advanced Materials, 2016, 28, 3467-3472.	21.0	98
87	Titelbild: Integration of Semiconducting Sulfides for Fullâ€Spectrum Solar Energy Absorption and Efficient Charge Separation (Angew. Chem. 22/2016). Angewandte Chemie, 2016, 128, 6453-6453.	2.0	0
88	Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties. Journal of the American Chemical Society, 2016, 138, 5576-5584.	13.7	54
89	Enhancing acid recovery efficiency by implementing oligomer ionic bridge in the membrane matrix. Journal of Membrane Science, 2016, 518, 263-272.	8.2	12
90	An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. Journal of Materials Chemistry A, 2016, 4, 16953-16960.	10.3	81

#	Article	IF	Citations
91	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie - International Edition, 2016, 55, 11499-11502.	13.8	206
92	Highly charged hierarchically structured porous anion exchange membranes with excellent performance. Journal of Membrane Science, 2016, 515, 154-162.	8.2	28
93	Graphene oxide embedded "three-phase―membrane to beat "trade-off―in acid recovery. Journal of Membrane Science, 2016, 520, 630-638.	8.2	30
94	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie, 2016, 128, 11671-11674.	2.0	47
95	Wittig reaction constructed an alkaline stable anion exchange membrane. Journal of Membrane Science, 2016, 518, 282-288.	8.2	40
96	Integration of Semiconducting Sulfides for Fullâ€Spectrum Solar Energy Absorption and Efficient Charge Separation. Angewandte Chemie, 2016, 128, 6506-6510.	2.0	21
97	One-pot solvent-free synthesis of cross-linked anion exchange membranes for electrodialysis. Journal of Membrane Science, 2016, 515, 115-124.	8.2	43
98	Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application. Separation and Purification Technology, 2016, 167, 108-116.	7.9	44
99	Proton exchange membrane from tetrazole-based poly (phthalazinone ether sulfone ketone) for high-temperature fuel cells. International Journal of Hydrogen Energy, 2016, 41, 12337-12346.	7.1	47
100	Dual-cation comb-shaped anion exchange membranes: Structure, morphology and properties. Journal of Membrane Science, 2016, 515, 189-195.	8.2	72
101	Decorating nanoporous ZIF-67-derived NiCo ₂ O ₄ shells on a Co ₃ O ₄ nanowire array core for battery-type electrodes with enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 10878-10884.	10.3	148
102	Preparation of pyrrolidinium-based anion-exchange membranes for acid recovery via diffusion dialysis. Separation Science and Technology, 2016, 51, 1881-1890.	2.5	23
103	Integration of Semiconducting Sulfides for Full‧pectrum Solar Energy Absorption and Efficient Charge Separation. Angewandte Chemie - International Edition, 2016, 55, 6396-6400.	13.8	119
104	Highly hydroxide conductive ionomers with fullerene functionalities. Chemical Communications, 2016, 52, 2788-2791.	4.1	25
105	Porous BPPO-based membranes modified by aromatic amine for acid recovery. Separation and Purification Technology, 2016, 157, 27-34.	7.9	37
106	Covalently cross-linked pyridinium based AEMs with aromatic pendant groups for acid recovery via diffusion dialysis. Separation and Purification Technology, 2016, 164, 125-131.	7.9	18
107	Stability challenge in anion exchange membrane for fuel cells. Current Opinion in Chemical Engineering, 2016, 12, 22-30.	7.8	63
108	A mechanically robust anion exchange membrane with high hydroxide conductivity. Journal of Membrane Science, 2016, 504, 47-54.	8.2	92

#	Article	IF	Citations
109	Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis. Journal of Membrane Science, 2016, 507, 90-98.	8.2	21
110	Development of BPPO-based anion exchange membranes for electrodialysis desalination applications. Desalination, 2016, 391, 61-68.	8.2	83
111	Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 2016, 57, 103-152.	24.7	262
112	Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation. Journal of Membrane Science, 2016, 498, 192-200.	8.2	100
113	Imidazolium functionalized anion exchange membrane blended with PVA for acid recovery via diffusion dialysis process. Journal of Membrane Science, 2016, 497, 209-215.	8.2	86
114	A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes. Scientific Reports, 2015, 5, 13417.	3.3	74
115	Highly Water Resistant Anion Exchange Membrane for Fuel Cells. Macromolecular Rapid Communications, 2015, 36, 1362-1367.	3.9	12
116	Scalable Bromide-Triggered Synthesis of Pd@Pt Core–Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 7862-7868.	13.7	204
117	Facile preparation of 1,8-Diazabicyclo[5.4.0]undec-7-ene based high performance anion exchange membranes for diffusion dialysis applications. Journal of Membrane Science, 2015, 491, 45-52.	8.2	60
118	Anion exchange membranes from hot-pressed electrospun QPPOâ€"SiO2 hybrid nanofibers for acid recovery. Journal of Membrane Science, 2015, 480, 115-121.	8.2	42
119	Quaternized membranes bearing zwitterionic groups for vanadium redox flow battery through a green route. Journal of Membrane Science, 2015, 483, 60-69.	8.2	56
120	Preparation of porous poly(vinylidene fluoride) membranes with acrylate particles for electrodialysis application. Separation and Purification Technology, 2015, 150, 102-111.	7.9	26
121	A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry A, 2015, 3, 15015-15019.	10.3	95
122	Novel Pendant Benzene Disulfonic Acid Blended SPPO Membranes for Alkali Recovery: Fabrication and Properties. ACS Applied Materials & Interfaces, 2015, 7, 15944-15954.	8.0	21
123	Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: toward high-performance battery-type electrodes. Journal of Materials Chemistry A, 2015, 3, 16688-16694.	10.3	74
124	Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polymer Chemistry, 2015, 6, 5809-5826.	3.9	119
125	Novel quaternized aromatic amine based hybrid PVA membranes for acid recovery. Journal of Membrane Science, 2015, 490, 29-37.	8.2	68
126	Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490, 1-8.	8.2	87

#	Article	IF	CITATIONS
127	Effect of novel polysiloxane functionalized poly(AMPS-co-CEA) membranes for base recovery from alkaline waste solutions via diffusion dialysis. RSC Advances, 2015, 5, 95256-95267.	3.6	8
128	In-situ crosslinking of anion exchange membrane bearing unsaturated moieties for electrodialysis. Separation and Purification Technology, 2015, 156, 226-233.	7.9	27
129	Ionically Crossâ€Linked Proton Conducting Membranes for Fuel Cells. Fuel Cells, 2015, 15, 189-195.	2.4	10
130	Selective reduction of aromatic nitro compounds over recyclable hollow fiber membraneâ€supported <scp>A</scp> u nanoparticles. Journal of Applied Polymer Science, 2015, 132, .	2.6	17
131	One-pot preparation of anion exchange membranes from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) for electrodialysis. Chemical Engineering Science, 2015, 135, 526-531.	3.8	16
132	Preparation of proton selective membranes through constructing H+ transfer channels by acid–base pairs. Journal of Membrane Science, 2015, 475, 273-280.	8.2	57
133	Sandwich structure SPPO/BPPO proton exchange membranes for fuel cells: Morphology–electrochemical properties relationship. Journal of Membrane Science, 2015, 475, 30-38.	8.2	32
134	Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method. Membrane Water Treatment, 2015, 6, 365-378.	0.5	18
135	Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Progress in Polymer Science, 2014, 39, 124-144.	24.7	166
136	Preparation of monovalent cation selective membranes through annealing treatment. Journal of Membrane Science, 2014, 459, 217-222.	8.2	55
137	Immobilization of N-(3-aminopropyl)-imidazole through MOFs in proton conductive membrane for elevated temperature anhydrous applications. Journal of Membrane Science, 2014, 458, 86-95.	8.2	34
138	Proton-conducting membranes based on side-chain-type sulfonated poly(ether ketone/ether) Tj ETQq0 0 0 rgBT	Overlock 1	10 ₂ Tf 50 302
139	Anionic quaternary ammonium fluorous copolymers bearing thermo-responsive grafts for fuel cells. International Journal of Hydrogen Energy, 2014, 39, 9387-9396.	7.1	6
140	Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1a~xSex)4 nanocrystals. Nanoscale, 2014, 6, 3418.	5.6	19
141	Cation exchange membranes from hot-pressed electrospun sulfonated poly(phenylene oxide) nanofibers for alkali recovery. Journal of Membrane Science, 2014, 470, 479-485.	8.2	27
142	High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470, 229-236.	8.2	62
143	Novel sulfonated polyimides proton-exchange membranes via a facile polyacylation approach of imide monomers. Journal of Membrane Science, 2014, 455, 1-6.	8.2	29
144	Diffusion dialysis membranes with semi-interpenetrating network for alkali recovery. Journal of Membrane Science, 2014, 451, 18-23.	8.2	40

#	Article	IF	Citations
145	Electrodialysis with notched ion exchange membranes: Experimental investigations and computational fluid dynamics simulations. Separation and Purification Technology, 2014, 130, 102-111.	7.9	12
146	Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design. Scientific Reports, 2014, 4, 6486.	3.3	64
147	Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 2014, 4, 4334.	3.3	81
148	Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4, 4612.	3.9	98
149	Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs). Physical Chemistry Chemical Physics, 2013, 15, 4870.	2.8	159
150	Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. Journal of Materials Chemistry A, 2013, 1, 2595.	10.3	97
151	Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy. Journal of Power Sources, 2013, 233, 259-268.	7.8	57
152	A convenient, efficient and green route for preparing anion exchange membranes for potential application in alkaline fuel cells. Journal of Membrane Science, 2013, 425-426, 190-199.	8.2	27
153	A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chemical Communications, 2013, 49, 143-145.	4.1	130
154	Synthesis of soluble copolymers bearing ionic graft for alkaline anion exchange membrane. RSC Advances, 2012, 2, 4250.	3.6	53
155	Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. Journal of Membrane Science, 2012, 415-416, 242-249.	8.2	205
156	Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2012, 217, 373-380.	7.8	148
157	Synthesis and Properties of Quaternary Phosphoniumâ€based Anion Exchange Membrane for Fuel Cells. Chinese Journal of Chemistry, 2012, 30, 2241-2246.	4.9	40
158	Novel aromatic proton-exchange polyelectrolytes via polyacylation of pre-sulfonated monomers. Journal of Materials Chemistry, 2012, 22, 13996.	6.7	36
159	Proton exchange composite membranes from blends of brominated and sulfonated poly(2,6â€dimethylâ€1,4â€phenylene oxide). Journal of Applied Polymer Science, 2012, 124, 3511-3519.	2.6	16
160	Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. Journal of Membrane Science, 2011, 367, 296-305.	8.2	74
161	Synthesis and properties of side-chain-type sulfonated poly(phenylene oxide) for proton exchange membranes. Journal of Membrane Science, 2011, 373, 160-166.	8.2	38
162	Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. Journal of Membrane Science, 2011, 371, 155-162.	8.2	63

#	Article	IF	CITATIONS
163	A simple heat treatment to prepare covalently crosslinked membranes from sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) for application in fuel cells. Journal of Membrane Science, 2010, 348, 167-173.	8.2	42
164	Modifying a Proton Conductive Membrane by Embedding a "Barrier― Journal of Physical Chemistry B, 2010, 114, 13121-13127.	2.6	17
165	Hybrid acid–base polymer membranes prepared for application in fuel cells. Journal of Power Sources, 2009, 186, 286-292.	7.8	75
166	Hydrogen Bonding: A Channel for Protons to Transfer through Acidâ^'Base Pairs. Journal of Physical Chemistry B, 2009, 113, 12265-12270.	2.6	38
167	Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell. Journal of Membrane Science, 2008, 310, 577-585.	8.2	132
168	A novel proton-conductive membrane with reduced methanol permeability prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO). Journal of Membrane Science, 2008, 310, 522-530.	8.2	45
169	Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. Journal of Membrane Science, 2008, 322, 286-292.	8.2	76
170	Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)â€"A versatile starting polymer for proton conductive membranes (PCMs). Progress in Polymer Science, 2008, 33, 894-915.	24.7	199
171	A simple evaluation of microstructure and transport parameters of ion-exchange membranes from conductivity measurements. Separation and Purification Technology, 2008, 60, 73-80.	7.9	36
172	Preparation of a Novel Hollow-Fiber Anion-Exchange Membrane and Its Preliminary Performance in Diffusion Dialysis. Industrial & Engineering Chemistry Research, 2008, 47, 6204-6210.	3.7	23
173	Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination. Journal of Membrane Science, 2006, 286, 185-192.	8.2	71
174	Single-Crystalline SnSe2 Nanosheets with Enhanced Lithium Storage Properties. Energy & Single-Crystalline SnSe2 Nanosheets with Enhanced Lithium Storage Properties.	5.1	7