Alessandra Marrella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. Sensors, 2022, 22, 1517.	3.8	14
2	High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE, 2021, 16, e0245536.	2.5	31
3	3D Perfusable Hydrogel Recapitulating the Cancer Dynamic Environment to in Vitro Investigate Metastatic Colonization. Polymers, 2020, 12, 2467.	4.5	13
4	Cell-Laden Hydrogel as a Clinical-Relevant 3D Model for Analyzing Neuroblastoma Growth, Immunophenotype, and Susceptibility to Therapies. Frontiers in Immunology, 2019, 10, 1876.	4.8	35
5	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	5.4	59
6	Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Materials Today, 2018, 21, 362-376.	14.2	178
7	Topographical Features of Graphene-Oxide-Functionalized Substrates Modulate Cancer and Healthy Cell Adhesion Based on the Cell Tissue of Origin. ACS Applied Materials & Interfaces, 2018, 10, 41978-41985.	8.0	19
8	"Green-reduced―graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. Materials Science and Engineering C, 2018, 93, 1044-1053.	7.3	38
9	A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. Journal of the Royal Society Interface, 2018, 15, 20180236.	3.4	19
10	3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens. Polymers, 2018, 10, 380.	4.5	40
11	Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon, 2017, 115, 608-616.	10.3	69
12	Rapid Prototyping for the Engineering of Osteochondral Tissues. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 163-185.	1.0	2
13	Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication. Biotechnology and Bioengineering, 2016, 113, 2286-2297.	3.3	14