
Philip S Barton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404088/publications.pdf Version: 2024-02-01

DHILLD S RADTON

#	Article	IF	CITATIONS
1	Scientists' warning to humanity on insect extinctions. Biological Conservation, 2020, 242, 108426.	1.9	458
2	Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology and Evolution, 2013, 28, 605-613.	4.2	323
3	The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia, 2013, 171, 761-772.	0.9	272
4	Solutions for humanity on how to conserve insects. Biological Conservation, 2020, 242, 108427.	1.9	203
5	The spatial scaling of beta diversity. Global Ecology and Biogeography, 2013, 22, 639-647.	2.7	181
6	Effects of large native herbivores on other animals. Journal of Applied Ecology, 2014, 51, 929-938.	1.9	131
7	Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nature Communications, 2014, 5, 3899.	5.8	128
8	Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs, 2019, 89, e01331.	2.4	127
9	The Trajectory of Dispersal Research in Conservation Biology. Systematic Review. PLoS ONE, 2014, 9, e95053.	1.1	91
10	A new framework for selecting environmental surrogates. Science of the Total Environment, 2015, 538, 1029-1038.	3.9	84
11	Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecological Indicators, 2016, 63, 121-125.	2.6	79
12	Integrating theory into disturbance interaction experiments to better inform ecosystem management. Global Change Biology, 2016, 22, 1325-1335.	4.2	78
13	Text analysis tools for identification of emerging topics and research gaps in conservation science. Conservation Biology, 2015, 29, 1606-1614.	2.4	71
14	Experimental reduction of native vertebrate grazing and addition of logs benefit beetle diversity at multiple scales. Journal of Applied Ecology, 2011, 48, 943-951.	1.9	66
15	Carrion decomposition causes large and lasting effects on soil amino acid and peptide flux. Soil Biology and Biochemistry, 2014, 69, 132-140.	4.2	64
16	Towards Quantifying Carrion Biomass in Ecosystems. Trends in Ecology and Evolution, 2019, 34, 950-961.	4.2	64
17	Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 2011, 102, 301-310.	0.7	63
18	An Empirical Assessment and Comparison of Species-Based and Habitat-Based Surrogates: A Case Study of Forest Vertebrates and Large Old Trees. PLoS ONE, 2014, 9, e89807.	1.1	62

#	Article	IF	CITATIONS
19	Conserving ground-dwelling beetles in an endangered woodland community: Multi-scale habitat effects on assemblage diversity. Biological Conservation, 2009, 142, 1701-1709.	1.9	60
20	Species Traits Predict Assemblage Dynamics at Ephemeral Resource Patches Created by Carrion. PLoS ONE, 2013, 8, e53961.	1.1	50
21	Width as an alternative measurement to length for post-mortem interval estimations using Calliphora augur (Diptera: Calliphoridae) larvae. Forensic Science International, 2006, 159, 158-167.	1.3	48
22	The law of diminishing returns: woodland birds respond to native vegetation cover at multiple spatial scales and over time. Diversity and Distributions, 2014, 20, 59-71.	1.9	47
23	Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecological Entomology, 2017, 42, 364-374.	1.1	45
24	Substantial longâ€ŧerm effects of carcass addition on soil and plants in a grassy eucalypt woodland. Ecosphere, 2016, 7, e01537.	1.0	44
25	Richness is not all: how changes in avian functional diversity reflect major landscape modification caused by pine plantations. Diversity and Distributions, 2015, 21, 836-847.	1.9	42
26	Conservation conundrums and the challenges of managing unexplained declines of multiple species. Biological Conservation, 2018, 221, 279-292.	1.9	42
27	Community composition of carrion-breeding blowflies (Diptera: Calliphoridae) along an urban gradient in south-eastern Australia. Landscape and Urban Planning, 2012, 106, 183-190.	3.4	41
28	Dominant Drivers of Seedling Establishment in a Fire-Dependent Obligate Seeder: Climate or Fire Regimes?. Ecosystems, 2014, 17, 258-270.	1.6	40
29	Effect of massing on larval growth rate. Forensic Science International, 2014, 241, 141-149.	1.3	38
30	Optimal taxonomic groups for biodiversity assessment: a metaâ€analytic approach. Ecography, 2017, 40, 539-548.	2.1	37
31	Guidelines for Using Movement Science to Inform Biodiversity Policy. Environmental Management, 2015, 56, 791-801.	1.2	36
32	Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes. Ecological Applications, 2016, 26, 557-573.	1.8	36
33	Long-term bird colonization and turnover in restored woodlands. Biodiversity and Conservation, 2016, 25, 1587-1603.	1.2	32
34	Crossâ€sectional and temporal relationships between bird occupancy and vegetation cover at multiple spatial scales. Ecological Applications, 2014, 24, 1275-1288.	1.8	31
35	Species coâ€occurrence networks show reptile community reorganization under agricultural transformation. Ecography, 2018, 41, 113-125.	2.1	31
36	Vegetation structure moderates the effect of fire on bird assemblages in a heterogeneous landscape. Landscape Ecology, 2014, 29, 703-714.	1.9	30

#	Article	IF	CITATIONS
37	Effects of past and present livestock grazing on herpetofauna in a landscapeâ€scale experiment. Conservation Biology, 2017, 31, 446-458.	2.4	29
38	Effects of a large wildfire on vegetation structure in a variable fire mosaic. Ecological Applications, 2017, 27, 2369-2381.	1.8	29
39	Multi-Scale Associations between Vegetation Cover and Woodland Bird Communities across a Large Agricultural Region. PLoS ONE, 2014, 9, e97029.	1.1	28
40	Can habitat surrogates predict the response of target species to landscape change?. Biological Conservation, 2015, 184, 1-10.	1.9	28
41	Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland. Applied Soil Ecology, 2017, 117-118, 117-128.	2.1	28
42	Tests of predictions associated with temporal changes in Australian bird populations. Biological Conservation, 2018, 222, 212-221.	1.9	27
43	Flower visitation and land cover associations of above ground- and below ground-nesting native bees in an agricultural region of south-east Australia. Agriculture, Ecosystems and Environment, 2020, 295, 106895.	2.5	27
44	Limited understanding of bushfire impacts on Australian invertebrates. Insect Conservation and Diversity, 2021, 14, 285-293.	1.4	27
45	Robustness of habitatâ€based surrogates of animal diversity: a multitaxa comparison over time. Journal of Applied Ecology, 2014, 51, 1434-1443.	1.9	26
46	Herbivory and fire interact to affect forest understory habitat, but not its use by small vertebrates. Animal Conservation, 2016, 19, 15-25.	1.5	26
47	Contrasting insect activity and decomposition of pigs and humans in an Australian environment: A preliminary study. Forensic Science International, 2020, 316, 110515.	1.3	26
48	An Empirical Assessment of the Focal Species Hypothesis. Conservation Biology, 2014, 28, 1594-1603.	2.4	25
49	Learning from clinical medicine to improve the use of surrogates in ecology. Oikos, 2015, 124, 391-398.	1.2	24
50	Effects of methamphetamine and its primary human metabolite, p-hydroxymethamphetamine, on the development of the Australian blowfly Calliphora stygia. Forensic Science International, 2014, 241, 102-111.	1.3	22
51	Bird community responses to the edge between suburbs and reserves. Oecologia, 2014, 174, 545-557.	0.9	22
52	Effects of environmental variation and livestock grazing on ant community structure in temperate eucalypt woodlands. Insect Conservation and Diversity, 2016, 9, 124-134.	1.4	22
53	Dynamic soil nutrient and moisture changes under decomposing vertebrate carcasses. Biogeochemistry, 2019, 146, 71-82.	1.7	22
54	Monitoring the dead as an ecosystem indicator. Ecology and Evolution, 2021, 11, 5844-5856.	0.8	22

#	Article	IF	CITATIONS
55	Remnant vegetation, plantings and fences are beneficial for reptiles in agricultural landscapes. Journal of Applied Ecology, 2017, 54, 1710-1719.	1.9	21
56	Dynamic effects of ground-layer plant communities on beetles in a fragmented farming landscape. Biodiversity and Conservation, 2018, 27, 2131-2153.	1.2	21
57	Disentangling the effects of farmland use, habitat edges, and vegetation structure on ground beetle morphological traits. Oecologia, 2018, 188, 645-657.	0.9	21
58	The Blow Fly Waltz: Field and Laboratory Observations of Novel and Complex Dipteran Courtship Behavior. Journal of Insect Behavior, 2019, 32, 109-119.	0.4	21
59	Avian functional responses to landscape recovery. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190114.	1.2	21
60	Novel bird responses to successive, largeâ€scale, landscape transformations. Ecological Monographs, 2019, 89, e01362.	2.4	20
61	Carrion Decomposition. Wildlife Research Monographs, 2019, , 101-124.	0.4	20
62	Love at first flight: wing interference patterns are speciesâ€ s pecific and sexually dimorphic in blowflies (Diptera: Calliphoridae). Journal of Evolutionary Biology, 2021, 34, 558-570.	0.8	19
63	Convergence of Social Strategies in Carrion Breeding Insects. BioScience, 2021, 71, 1028-1037.	2.2	19
64	Visualization of species pairwise associations: a case study of surrogacy in bird assemblages. Ecology and Evolution, 2014, 4, 3279-3289.	0.8	18
65	Interactive effects of fire and large herbivores on web-building spiders. Oecologia, 2015, 179, 237-248.	0.9	18
66	Environmental and spatial drivers of spider diversity at contrasting microhabitats. Austral Ecology, 2017, 42, 700-710.	0.7	18
67	Monitoring the extent of vertical and lateral movement of human decomposition products through sediment using cholesterol as a biomarker. Forensic Science International, 2018, 285, 93-104.	1.3	18
68	Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation. Applied Vegetation Science, 2018, 21, 132-143.	0.9	18
69	Spatial and temporal definition of Ochlerotatus camptorhynchus (Thomson) (Diptera: Culicidae) in the Gippsland Lakes system of eastern Victoria. Australian Journal of Entomology, 2004, 43, 16-22.	1.1	17
70	Synergistic interactions between fire and browsing drive plant diversity in a forest understorey. Journal of Vegetation Science, 2015, 26, 1112-1123.	1.1	17
71	Birds as surrogates for mammals and reptiles: Are patterns of cross-taxonomic associations stable over time in a human-modified landscape?. Ecological Indicators, 2016, 69, 152-164.	2.6	17
72	Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?. Ecological Applications, 2016, 26, 2267-2279.	1.8	17

#	Article	IF	CITATIONS
73	Body farms. Forensic Science, Medicine, and Pathology, 2017, 13, 487-489.	0.6	17
74	Cross-taxonomic surrogates for biodiversity conservation in human-modified landscapes – A multi-taxa approach. Biological Conservation, 2018, 224, 336-346.	1.9	17
75	Wildlife Conservation in Farm Landscapes. , 2016, , .		17
76	Contrasting diversity dynamics of phoretic mites and beetles associated with vertebrate carrion. Experimental and Applied Acarology, 2014, 63, 1-13.	0.7	16
77	Infrared imaging as a non-invasive tool for documenting maggot mass temperatures. Australian Journal of Forensic Sciences, 2014, 46, 73-79.	0.7	14
78	Beetle's responses to edges in fragmented landscapes are driven by adjacent farmland use, season and cross-habitat movement. Landscape Ecology, 2018, 33, 109-125.	1.9	14
79	Nutrient and moisture transfer to insect consumers and soil during vertebrate decomposition. Food Webs, 2019, 18, e00110.	0.5	14
80	How practitioners integrate decision triggers with existing metrics in conservation monitoring. Journal of Environmental Management, 2019, 230, 94-101.	3.8	14
81	ls Resource Change a Useful Predictor of Carrion Insect Succession on Pigs and Humans?. Journal of Medical Entomology, 2021, 58, 2228-2235.	0.9	14
82	Necrophilous Insect Dynamics at Small Vertebrate Carrion in a Temperate Eucalypt Woodland. Journal of Medical Entomology, 2017, 54, 964-973.	0.9	13
83	Interactive effects of land use, grazing and environment on frogs in an agricultural landscape. Agriculture, Ecosystems and Environment, 2019, 281, 25-34.	2.5	13
84	A reintroduced ecosystem engineer provides a germination niche for native plant species. Biodiversity and Conservation, 2020, 29, 817-837.	1.2	13
85	Reptiles and frogs use most land cover types as habitat in a fineâ€grained agricultural landscape. Austral Ecology, 2018, 43, 502-513.	0.7	12
86	Contrasting effects of mosaic structure on alpha and beta diversity of bird assemblages in a humanâ€modified landscape. Ecography, 2019, 42, 173-186.	2.1	12
87	Traits reveal ecological strategies driving carrion insect community assembly. Ecological Entomology, 2020, 45, 966-977.	1.1	12
88	Seal carrion is a predictable resource for coastal ecosystems. Acta Oecologica, 2018, 88, 41-51.	0.5	11
89	The use and utility of surrogates in biodiversity monitoring programmes. Journal of Applied Ecology, 2019, 56, 1304-1310.	1.9	11
90	Pollination and resource limitation as interacting constraints on almond fruit set. Plant Biology, 2020, 22, 113-119.	1.8	11

#	Article	IF	CITATIONS
91	The evolution of sexually dimorphic cuticular hydrocarbons in blowflies (Diptera: Calliphoridae). Journal of Evolutionary Biology, 2020, 33, 1468-1486.	0.8	11
92	Invasive European wasps alter scavenging dynamics around carrion. Food Webs, 2020, 24, e00144.	0.5	11
93	Fineâ€scale heterogeneity in beetle assemblages under coâ€occurring <i>Eucalyptus</i> in the same subgenus. Journal of Biogeography, 2010, 37, 1927-1937.	1.4	10
94	Soil chemical markers distinguishing human and pig decomposition islands: a preliminary study. Forensic Science, Medicine, and Pathology, 2020, 16, 605-612.	0.6	10
95	A new species of sucking louse (Phthiraptera: Anoplura) from Australia, and a key to the Australian species of Hoplopleura. Zootaxa, 2008, 1679, 55.	0.2	9
96	Incorporating regionalâ€scale ecological knowledge to improve the effectiveness of largeâ€scale conservation programmes. Animal Conservation, 2016, 19, 515-525.	1.5	9
97	Beetle ecological indicators – A comparison of cost vs reward to understand functional changes in response to restoration actions. Ecological Indicators, 2019, 104, 209-218.	2.6	9
98	Major Transitions in Cuticular Hydrocarbon Expression Coincide with Sexual Maturity in a Blowfly (Diptera: Calliphoridae). Journal of Chemical Ecology, 2020, 46, 610-618.	0.9	9
99	What's hot and what's not – Identifying publication trends in insect ecology. Austral Ecology, 2022, 47, 5-16.	0.7	9
100	Evaluating the effectiveness of overstory cover as a surrogate for bird community diversity and population trends. Ecological Indicators, 2016, 61, 790-798.	2.6	8
101	Does wing morphology affect recolonization of restored farmland by groundâ€dwelling beetles?. Restoration Ecology, 2017, 25, 234-242.	1.4	8
102	Contrasting beetle assemblage responses to cultivated farmlands and native woodlands in a dynamic agricultural landscape. Ecosphere, 2017, 8, e02042.	1.0	8
103	Surrogates Underpin Ecological Understanding and Practice. BioScience, 2018, 68, 640-642.	2.2	8
104	Using ecological niche theory to avoid uninformative biodiversity surrogates. Ecological Indicators, 2020, 108, 105692.	2.6	8
105	Invertebrate Scavenging Communities. Wildlife Research Monographs, 2019, , 45-69.	0.4	8
106	Effects of digging by a native and introduced ecosystem engineer on soil physical and chemical properties in temperate grassy woodland. PeerJ, 2019, 7, e7506.	0.9	8
107	Invertebrate scavengers matter. Science, 2019, 363, 1162-1162.	6.0	7
108	Conserving focal insect groups in woodland remnants: The role of landscape context and habitat structure on cross-taxonomic congruence. Ecological Indicators, 2020, 115, 106391.	2.6	7

#	Article	IF	CITATIONS
109	Temperature dynamics in different body regions of decomposing vertebrate remains. Forensic Science International, 2021, 325, 110900.	1.3	7
110	A longâ€ŧerm habitat fragmentation experiment leads to morphological change in a species of carabid beetle. Ecological Entomology, 2018, 43, 282-293.	1.1	6
111	Managing uncertainty in movement knowledge for environmental decisions. Conservation Letters, 2019, 12, e12620.	2.8	6
112	Quantifying shifts in topic popularity over 44 years of <i>Austral Ecology</i> . Austral Ecology, 2020, 45, 663-671.	0.7	6
113	Ant community responses to farmland use and revegetation in a fragmented agricultural landscape. Agriculture, Ecosystems and Environment, 2021, 311, 107316.	2.5	6
114	Field succession studies and casework can help to identify forensically useful Diptera. Journal of Forensic Sciences, 2021, 66, 2319-2328.	0.9	6
115	How bioregional history could shape the future of agriculture. Advances in Ecological Research, 2021, , 149-189.	1.4	6
116	Arthropod assemblages in a focal tree species (Eucalyptus microcarpa) depends on the species mix in restoration plantings. Biodiversity and Conservation, 2013, 22, 2091-2110.	1.2	5
117	Can Coarse Woody Debris Be Used for Carbon Storage in Open Grazed Woodlands?. Journal of Environmental Quality, 2015, 44, 1210-1215.	1.0	5
118	Insect abundance patterns on vertebrate remains reveal carrion resource quality variation. Oecologia, 2022, 198, 1043-1056.	0.9	5
119	How does mass loss compare with total body score when assessing decomposition of human and pig cadavers?. Forensic Science, Medicine, and Pathology, 2022, 18, 343-351.	0.6	5
120	Mosquito (Diptera: Culicidae) and Rainfall Associations with Arbovirus Disease in Eastern Victoria. Transactions of the Royal Society of South Australia, 2009, 133, 257-264.	0.1	4
121	Fineâ€scale drivers of beetle diversity are affected by vegetation context and agricultural history. Austral Ecology, 2017, 42, 831-843.	0.7	4
122	Higher-taxon and functional group responses of ant and bird assemblages to livestock grazing: A test of an explicit surrogate concept. Ecological Indicators, 2019, 96, 458-465.	2.6	4
123	<i>Macronychia</i> (Diptera: Sarcophagidae) goes cosmopolitan: description and molecular delineation of the first Australasian species. Austral Entomology, 2020, 59, 292-301.	0.8	4
124	Development of larvae of the Australian blowfly, <i>Calliphora augur</i> (Diptera: Calliphoridae), at constant temperatures. Australian Journal of Forensic Sciences, 2022, 54, 710-721.	0.7	4
125	Ecological processes associated with different animal taxa in urban environments. Ecosphere, 2021, 12, e03712.	1.0	4
126	Grassland area determines beetle assemblage dissimilarity from surrounding floodplain forest. Journal of Insect Conservation, 2013, 17, 1209-1219.	0.8	3

#	Article	IF	CITATIONS
127	First gall midge (Diptera: Cecidomyiidae) known to feed on plant family Atherospermataceae: a new species of <scp><i>Asphondylia</i></scp> damaging the endangered Australian tree <scp><i>Daphnandra johnsonii</i></scp> . Austral Entomology, 2019, 58, 317-323.	0.8	3
128	Integrative taxonomy reveals remarkable diversity in Australian Protomiltogramma (Diptera:) Tj ETQq0 0 0 rgBT /0	Overlock 1 0.2	.0 Jf 50 702 ⁻
129	Integrative Taxonomy of Australian <i>Metopia</i> (Sarcophagidae: Miltogramminae) Reveals a New Species and Challenges Traditional Phylogeny. Insect Systematics and Diversity, 2020, 4, .	0.7	3
130	Priority effects and density promote coexistence between the facultative predator Chrysomya rufifacies and its competitor Calliphora stygia. Oecologia, 2022, 199, 181-191.	0.9	3
131	Effects of fire on vegetation and arthropods in a coastal heath, southâ€east Queensland. Ecological Management and Restoration, 2015, 16, 73-75.	0.7	2
132	Echoing the Need to Quantify Carrion Biomass Production. Trends in Ecology and Evolution, 2020, 35, 92-94.	4.2	2
133	First instar larvae of endemic Australian Miltogramminae (Diptera: Sarcophagidae). Scientific Reports, 2021, 11, 2687.	1.6	2
134	The predatory impacts of invasive European wasps on flies are facilitated by carcasses with open wounds. Food Webs, 2022, 31, e00227.	0.5	2
135	Notes on the Distribution of 31 Species of Sarcophagidae (Diptera) in Australia, Including new Records in Australia for Eight Species. Transactions of the Royal Society of South Australia, 2012, 136, 56-64.	0.1	1
136	Outfoxing the fox: Effect of prey odor on fox behavior in a pastoral landscape. Conservation Science and Practice, 0, , .	0.9	1

137Introduction to the Insect Ecology Special Issue. Austral Ecology, 2022, 47, 3-4.0.70

A new species of carrion-breeding "golden blowfly―from south-eastern Australia (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 30