
Francis W Zwiers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6403290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human contribution to more-intense precipitation extremes. Nature, 2011, 470, 378-381.	27.8	1,695
2	Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1716-1733.	3.3	1,131
3	Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2473-2493.	3.3	1,126
4	Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate, 2013, 26, 3904-3918.	3.2	888
5	Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 2013, 119, 345-357.	3.6	887
6	Detection of human influence on twentieth-century precipitation trends. Nature, 2007, 448, 461-465.	27.8	872
7	Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 2004, 31,	4.0	578
8	Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 2014, 4, 1082-1085.	18.8	544
9	Estimating Extremes in Transient Climate Change Simulations. Journal of Climate, 2005, 18, 1156-1173.	3.2	459
10	Taking Serial Correlation into Account in Tests of the Mean. Journal of Climate, 1995, 8, 336-351.	3.2	408
11	Avoiding Inhomogeneity in Percentile-Based Indices of Temperature Extremes. Journal of Climate, 2005, 18, 1641-1651.	3.2	363
12	Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 2013, 40, 5252-5257.	4.0	254
13	Anthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales. Journal of Climate, 2011, 24, 881-892.	3.2	224
14	Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 2017, 10, 255-259.	12.9	193
15	Attribution of Extreme Events in Arctic Sea Ice Extent. Journal of Climate, 2017, 30, 553-571.	3.2	173
16	The Influence of Large-Scale Climate Variability on Winter Maximum Daily Precipitation over North America. Journal of Climate, 2010, 23, 2902-2915.	3.2	160
17	Human-Induced Arctic Moistening. Science, 2008, 320, 518-520.	12.6	159
18	Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nature Climate Change, 2015, 5, 246-249.	18.8	159

FRANCIS W ZWIERS

#	Article	IF	CITATIONS
19	Attribution of the Influence of Humanâ€Induced Climate Change on an Extreme Fire Season. Earth's Future, 2019, 7, 2-10.	6.3	159
20	Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 3441-3460.	3.2	132
21	A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. Journal of Climate, 2021, 34, 243-258.	3.2	124
22	Risks from Climate Extremes Change Differently from 1.5°C to 2.0°C Depending on Rarity. Earth's Future, 2018, 6, 704-715.	6.3	117
23	PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.	3.3	116
24	Intercomparison of Near-Surface Temperature and Precipitation Extremes in AMIP-2 Simulations, Reanalyses, and Observations. Journal of Climate, 2005, 18, 5201-5223.	3.2	96
25	Comment on "Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test―by Sheng Yue and Chun Yuan Wang. Water Resources Research, 2004, 40, .	4.2	94
26	Attributing extreme fire risk in Western Canada to human emissions. Climatic Change, 2017, 144, 365-379.	3.6	92
27	Detection of volcanic influence on global precipitation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	85
28	Detecting anthropogenic influence with a multi-model ensemble. Geophysical Research Letters, 2002, 29, 31-1-31-4.	4.0	78
29	Larger Increases in More Extreme Local Precipitation Events as Climate Warms. Geophysical Research Letters, 2019, 46, 6885-6891.	4.0	76
30	Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 2016, 46, 1769-1782.	3.8	74
31	The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Climate Dynamics, 2017, 48, 1401-1411.	3.8	63
32	Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Water Resources Research, 2016, 52, 3127-3142.	4.2	60
33	How Much Information Is Required to Well Constrain Local Estimates of Future Precipitation Extremes?. Earth's Future, 2019, 7, 11-24.	6.3	55
34	A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Scientific Data, 2019, 6, 180299.	5.3	49
35	Evidence of Decadal Climate Prediction Skill Resulting from Changes in Anthropogenic Forcing. Journal of Climate, 2006, 19, 5305-5318.	3.2	45
36	The contribution of anthropogenic forcings to regional changes in temperature during the last decade. Climate Dynamics, 2012, 39, 1259-1274.	3.8	40

FRANCIS W ZWIERS

#	Article	IF	CITATIONS
37	Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Climatic Change, 2016, 136, 571-586.	3.6	40
38	Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Climate Dynamics, 2016, 46, 3821-3843.	3.8	40
39	Rapid Warming in Summer Wet Bulb Globe Temperature in China with Human-Induced Climate Change. Journal of Climate, 2020, 33, 5697-5711.	3.2	40
40	Recent Very Hot Summers in Northern Hemispheric Land Areas Measured by Wet Bulb Globe Temperature Will Be the Norm Within 20 Years. Earth's Future, 2017, 5, 1203-1216.	6.3	37
41	Attribution of the Observed Spring Snowpack Decline in British Columbia to Anthropogenic Climate Change. Journal of Climate, 2017, 30, 4113-4130.	3.2	35
42	Evaluating Hydroclimatic Change Signals from Statistically and Dynamically Downscaled GCMs and Hydrologic Models. Journal of Hydrometeorology, 2014, 15, 844-860.	1.9	34
43	Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis. Climate Dynamics, 2010, 34, 1139-1156.	3.8	33
44	Atmospheric Rivers Increase Future Flood Risk in Western Canada's Largest Pacific River. Geophysical Research Letters, 2019, 46, 1651-1661.	4.0	27
45	Historically hottest summers projected to be the norm for more than half of the world's population within 20 years. Environmental Research Letters, 2016, 11, 044011.	5.2	26
46	Human influence on the 2021 British Columbia floods. Weather and Climate Extremes, 2022, 36, 100441.	4.1	24
47	Human influence on Canadian temperatures. Climate Dynamics, 2019, 52, 479-494.	3.8	23
48	Attribution of Observed Streamflow Changes in Key British Columbia Drainage Basins. Geophysical Research Letters, 2017, 44, 11,012.	4.0	22
49	Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	21
50	Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia. Hydrology and Earth System Sciences, 2019, 23, 811-828.	4.9	21
51	Projecting future nonstationary extreme streamflow for the Fraser River, Canada. Climatic Change, 2017, 145, 289-303.	3.6	20
52	Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia. Hydrology and Earth System Sciences, 2018, 22, 2285-2309.	4.9	20
53	An Evaluation of Block-Maximum-Based Estimation of Very Long Return Period Precipitation Extremes with a Large Ensemble Climate Simulation. Journal of Climate, 2020, 33, 6957-6970.	3.2	16
54	A Comparison of Intra-Annual and Long-Term Trend Scaling of Extreme Precipitation with Temperature in a Large-Ensemble Regional Climate Simulation. Journal of Climate, 2020, 33, 9233-9245.	3.2	16

FRANCIS W ZWIERS

#	Article	IF	CITATIONS
55	Designing Detection and Attribution Simulations for CMIP6 to Optimize the Estimation of Greenhouse Gas–Induced Warming. Journal of Climate, 2015, 28, 3435-3438.	3.2	15
56	Estimating concurrent climate extremes: A conditional approach. Weather and Climate Extremes, 2021, 33, 100332.	4.1	11
57	Climate Model Projections for Canada: A Comparison of CMIP5 and CMIP6. Atmosphere - Ocean, 2021, 59, 269-284.	1.6	11
58	Quantifying the Human Influence on the Intensity of Extreme 1- and 5-Day Precipitation Amounts at Global, Continental, and Regional Scales. Journal of Climate, 2022, 35, 195-210.	3.2	10
59	Changes in the Arctic Oscillation under increased atmospheric greenhouse gases. Geophysical Research Letters, 2007, 34, .	4.0	9
60	A bivariate approach to estimating the probability of very extreme precipitation events. Weather and Climate Extremes, 2020, 30, 100290.	4.1	9
61	Probable maximum precipitation in a warming climate over North America in CanRCM4 and CRCM5. Climatic Change, 2020, 158, 611-629.	3.6	8
62	Improving the Estimation of Human Climate Influence by Selecting Appropriate Forcing Simulations. Geophysical Research Letters, 2021, 48, e2021GL095500.	4.0	7
63	On the Optimal Design of Field Significance Tests for Changes in Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL092831.	4.0	6
64	The January 2021 Cold Air Outbreak over Eastern China: Is There a Human Fingerprint?. Bulletin of the American Meteorological Society, 2022, 103, S50-S54.	3.3	4