
Naoto Ueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6403169/publications.pdf Version: 2024-02-01

NAOTO LIENO

#	Article	IF	CITATIONS
1	Force-dependent remodeling of cytoplasmic ZO-1 condensates contributes to cell-cell adhesion through enhancing tight junctions. IScience, 2022, 25, 103846.	1.9	12
2	Differential Cellular Stiffness Contributes to Tissue Elongation on an Expanding Surface. Frontiers in Cell and Developmental Biology, 2022, 10, 864135.	1.8	3
3	CRISPR/Cas9-based simple transgenesis in Xenopus laevis. Developmental Biology, 2022, 489, 76-83.	0.9	4
4	Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis. Nature Communications, 2021, 12, 7145.	5.8	30
5	A step-down photophobic response in coral larvae: implications for the light-dependent distribution of the common reef coral, Acropora tenuis. Scientific Reports, 2020, 10, 17680.	1.6	18
6	Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis. Cell Reports, 2020, 30, 3875-3888.e3.	2.9	28
7	Environmental factors explain spawning day deviation from full moon in the scleractinian coral <i>Acropora</i> . Biology Letters, 2020, 16, 20190760.	1.0	17
8	Cdc2â€like kinase 2 (Clk2) promotes early neural development in <i>Xenopus</i> embryos. Development Growth and Differentiation, 2019, 61, 365-377.	0.6	8
9	Global Shifts in Gene Expression Profiles Accompanied with Environmental Changes in Cnidarian-Dinoflagellate Endosymbiosis. G3: Genes, Genomes, Genetics, 2019, 9, 2337-2347.	0.8	12
10	Mechanical Force Induces Phosphorylation-Mediated Signaling that Underlies Tissue Response and Robustness in Xenopus Embryos. Cell Systems, 2019, 8, 226-241.e7.	2.9	18
11	Biallelic <i>KARS</i> pathogenic variants cause an early-onset progressive leukodystrophy. Brain, 2019, 142, 560-573.	3.7	16
12	Estimation of mechanical environment in the Xenopus laevis embryos with micro-piercing method. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.31, 1E22.	0.0	0
13	Development of a multi-point indentation tester on the section of Xenopus laevis tailbud embryo. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.32, 1B24.	0.0	0
14	Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Scientific Reports, 2018, 8, 2433.	1.6	25
15	Enhancer activities of amphioxus <i>Brachyury</i> genes in embryos of the ascidian, <i>Ciona intestinalis</i> . Genesis, 2018, 56, e23240.	0.8	4
16	Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter. PLoS Biology, 2018, 16, e2004426.	2.6	21
17	Study on the estimation of mechanical environment in the Xenopus laevis embryo. The Proceedings of Conference of Tokai Branch, 2018, 2018.67, 621.	0.0	0
18	Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development (Cambridge), 2017, 144, 1307-1316.	1.2	42

#	Article	IF	CITATIONS
19	SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports, 2017, 8, 561-575.	2.3	79
20	Measurement of surface topography and stiffness distribution on crossâ€section of Xenopus laevis tailbud for estimation of mechanical environment in embryo. Development Growth and Differentiation, 2017, 59, 434-443.	0.6	1
21	Genes coding for cyclin-dependent kinase inhibitors are fragile in Xenopus. Developmental Biology, 2017, 426, 291-300.	0.9	2
22	Biomechanics of animal development. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2017, 2017.29, 1A32.	0.0	0
23	Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Frontiers in Cell and Developmental Biology, 2016, 4, 139.	1.8	28
24	Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1733-1746.	1.4	50
25	Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2766-2783.	1.9	7
26	Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct. Biophysical Journal, 2016, 111, 650-665.	0.2	32
27	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	13.7	849
28	Involvement of JunB Proto-Oncogene in Tail Formation During Early Xenopus Embryogenesis. Zoological Science, 2016, 33, 282.	0.3	5
29	<i>In vivo</i> tracking of histone H3 lysine 9 acetylation in <i>Xenopus laevis</i> during tail regeneration. Genes To Cells, 2016, 21, 358-369.	0.5	29
30	Physical association between a novel plasma-membrane structure and centrosome orients cell division. ELife, 2016, 5, .	2.8	16
31	1D43 Estimation of stress in notochord from topography and stiffness distribution on the cross section of Xenopus laevis embryo. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _1D43-11D43-4	0.0	0
32	Conservation of structure and function in vertebrate c-FLIP proteins despite rapid evolutionary change. Biochemistry and Biophysics Reports, 2015, 3, 175-189.	0.7	5
33	Phosphorylation-Dependent Ubiquitination of Paraxial Protocadherin (PAPC) Controls Gastrulation Cell Movements. PLoS ONE, 2015, 10, e0115111.	1.1	9
34	Extraordinary Diversity in the Origins of Sex Chromosomes in Anurans Inferred from Comparative Gene Mapping. Cytogenetic and Genome Research, 2015, 145, 218-229.	0.6	16
35	G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Developmental Biology, 2015, 407, 131-144.	0.9	7
36	Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies (discontinued), 2014, 54, 1-7.	0.3	4

#	Article	IF	CITATIONS
37	Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biology, 2014, 12, 40.	1.7	20
38	1E41 Establishment of the anisotropic measurement of soft tissue elasticity with rectangular hole indentation and its application to Xenopus gastrula. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 157-158.	0.0	0
39	B110 Development of a method for instantaneous measurement of stiffness distribution and surface topography in sections ofXenopus laevis embryo. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2014, 2014.25, 47-48.	0.0	0
40	Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Developmental Biology, 2013, 382, 482-495.	0.9	39
41	Transgenic <i><scp>X</scp>enopus laevis</i> for live imaging in cell and developmental biology. Development Growth and Differentiation, 2013, 55, 422-433.	0.6	33
42	PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders. PLoS ONE, 2013, 8, e80737.	1.1	39
43	3D08 Estimation of stress distribution in Xenopus laevis embryo from topography and stiffness distribution in its cross section. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 567-568.	0.0	0
44	Translation of incenp During Oocyte Maturation Is Required for Embryonic Development in Xenopus laevis1. Biology of Reproduction, 2012, 86, 161, 1-8.	1.2	5
45	Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in <i>Xenopus</i> . Development (Cambridge), 2012, 139, 1417-1426.	1.2	45
46	Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development (Cambridge), 2012, 139, 3644-3652.	1.2	71
47	Multiple functions of <scp>FADD</scp> in apoptosis, <scp>NF</scp> â€₽Bâ€related signaling, and heart development in <i>Xenopus</i> embryos. Genes To Cells, 2012, 17, 875-896.	0.5	6
48	Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping. PLoS ONE, 2012, 7, e53027.	1.1	94
49	Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Developmental Biology, 2012, 364, 138-148.	0.9	43
50	Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Development Growth and Differentiation, 2012, 54, 266-276.	0.6	88
51	8C42 Estimation of stress distribution in Xenopus laevis embryo with an environmental scanning electron microscope. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _8C42-18C42-2	0.0	0
52	J028025 Estimation of stress distribution on Xenopus gastrula epithelium with laser ablation method. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _J028025-1J028025-5.	0.0	0
53	Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes. Journal of Genetics and Genomics, 2011, 38, 577-584.	1.7	8
54	The forkhead transcription factor FoxB1 regulates the dorsal–ventral and anterior–posterior patterning of the ectoderm during early Xenopus embryogenesis. Developmental Biology, 2011, 360, 11-29.	0.9	22

#	Article	IF	CITATIONS
55	Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans. American Journal of Human Genetics, 2011, 88, 138-149.	2.6	125
56	MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2011, 138, 385-385.	1.2	3
57	Ciona intestinalis Noto4 contains a phosphotyrosine interaction domain and is involved in the midline intercalation of notochord cells. International Journal of Developmental Biology, 2011, 55, 11-18.	0.3	8
58	S022013 Estimation of stress distribution in Xenopus laevis embryo by multidirectional measurement. The Proceedings of Mechanical Engineering Congress Japan, 2011, 2011, _S022013-1S022013-5.	0.0	0
59	Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of <i>Xenopus</i> neural tube morphogenesis. Development (Cambridge), 2010, 137, 1315-1325.	1.2	69
60	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2010, 137, 2329-2339.	1.2	65
61	Dual Roles of Smad Proteins in the Conversion from Myoblasts to Osteoblastic Cells by Bone Morphogenetic Proteins. Journal of Biological Chemistry, 2010, 285, 15577-15586.	1.6	70
62	Regulation of Notochord-Specific Expression of Ci-Bra Downstream Genes in Ciona intestinalis Embryos. Zoological Science, 2010, 27, 110.	0.3	8
63	Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation. PLoS ONE, 2010, 5, e8897.	1.1	36
64	0617 Estimation of stress distribution in Xenopus laevis embryo during development. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 102.	0.0	0
65	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Journal of Cell Science, 2010, 123, e1-e1.	1.2	0
66	Mouse <i>prickle1</i> , the homolog of a PCP gene, is essential for epiblast apical-basal polarity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14426-14431.	3.3	102
67	<i>Xenopus</i> Rnd1 and Rnd3 GTPâ€binding proteins are expressed under the control of segmentation clock and required for somite formation. Developmental Dynamics, 2009, 238, 2867-2876.	0.8	15
68	Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos. Developmental Biology, 2009, 328, 1-12.	0.9	17
69	Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mechanisms of Development, 2009, 126, 56-67.	1.7	38
70	Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra. Botany, 2009, 87, 315-323.	0.5	29
71	High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases. PLoS ONE, 2009, 4, e5868.	1.1	67
72	Roles of cottony hairs in directed seed dispersal in riparian willows. Plant Ecology, 2008, 198, 27-35.	0.7	31

#	Article	IF	CITATIONS
73	Evading the annotation bottleneck: using sequence similarity to search non-sequence gene data. BMC Bioinformatics, 2008, 9, 442.	1.2	14
74	Pathogen attack and spatial patterns of juvenile mortality and growth in a temperate tree, <i>Prunus grayana</i> . Canadian Journal of Forest Research, 2008, 38, 2445-2454.	0.8	53
75	Coordination of Cell Polarity during Xenopus Gastrulation. PLoS ONE, 2008, 3, e1600.	1.1	31
76	TGF-β signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes and Development, 2007, 21, 1817-1831.	2.7	121
77	Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Developmental Biology, 2007, 312, 115-130.	0.9	109
78	Projecting 2D gene expression data into 3D and 4D space. Developmental Dynamics, 2007, 236, 1036-1043.	0.8	1
79	<i>Brachyury</i> â€downstream notochord genes and convergent extension in <i>Ciona intestinalis</i> embryos. Development Growth and Differentiation, 2007, 49, 373-382.	0.6	27
80	<i>Drosophila NAT1</i> , a homolog of the vertebrate translational regulator <i>NAT1/DAP5/p97</i> , is required for embryonic germband extension and metamorphosis. Development Growth and Differentiation, 2007, 49, 623-634.	0.6	17
81	What makes the sex ratio female-biased in the dioecious tree Salix sachalinensis?. Journal of Ecology, 2007, 95, 951-959.	1.9	74
82	ANR5, an FGF Target Gene Product, Regulates Gastrulation in Xenopus. Current Biology, 2007, 17, 932-939.	1.8	41
83	Sexual differences in shoot and leaf dynamics in the dioecious tree Salix sachalinensis. Canadian Journal of Botany, 2006, 84, 1852-1859.	1.2	20
84	XGAP, an ArfGAP, Is Required for Polarized Localization of PAR Proteins and Cell Polarity in Xenopus Gastrulation. Developmental Cell, 2006, 11, 69-79.	3.1	38
85	Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. Developmental Cell, 2006, 11, 791-801.	3.1	671
86	Nucleosome regulator Xhmgb3 is required for cell proliferation of the eye and brain as a downstream target of Xenopus rax/Rx1. Developmental Biology, 2006, 291, 398-412.	0.9	24
87	Shoot life span in relation to successional status in deciduous broadâ€ l eaved tree species in a temperate forest. New Phytologist, 2006, 169, 537-548.	3.5	37
88	The initiator caspase, caspase-10β, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation inXenopusof their pro-apoptotic activities in the extrinsic and intrinsic pathways. Genes To Cells, 2006, 11, 701-717.	0.5	15
89	TransgenicXenopus laevis strain expressing cre recombinase in muscle cells. Developmental Dynamics, 2006, 235, 2220-2228.	0.8	25
90	Identification of asymmetrically localized transcripts along the animal-vegetal axis of the Xenopus egg. Development Growth and Differentiation, 2005, 47, 511-521.	0.6	10

#	Article	IF	CITATIONS
91	Identification of neural genes usingXenopus DNA microarrays. Developmental Dynamics, 2005, 232, 432-444.	0.8	28
92	AXenopus DNA microarray approach to identify novel direct BMP target genes involved in early embryonic development. Developmental Dynamics, 2005, 232, 445-456.	0.8	24
93	Global analysis of RAR-responsive genes in theXenopusneurula using cDNA microarrays. Developmental Dynamics, 2005, 232, 414-431.	0.8	54
94	Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells. Developmental Dynamics, 2005, 233, 562-569.	0.8	25
95	Macroarray-based analysis of tail regeneration inXenopus laevis larvae. Developmental Dynamics, 2005, 233, 1394-1404.	0.8	42
96	FGF signal regulates gastrulation cell movements and morphology through its target NRH. Developmental Biology, 2005, 282, 95-110.	0.9	31
97	Identification of target genes for the Xenopus Hes-related protein XHR1, a prepattern factor specifying the midbrain–hindbrain boundary. Developmental Biology, 2005, 283, 253-267.	0.9	21
98	Global gene expression profiling and cluster analysis in Xenopus laevis. Mechanisms of Development, 2005, 122, 441-475.	1.7	59
99	Role of the TAK1-NLK-STAT3 pathway in TGF-Â-mediated mesoderm induction. Genes and Development, 2004, 18, 381-386.	2.7	96
100	Essential role of MARCKS in cortical actin dynamics during gastrulation movements. Journal of Cell Biology, 2004, 164, 169-174.	2.3	76
101	Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Development Growth and Differentiation, 2004, 46, 97-105.	0.6	40
102	Screening of FGF target genes inXenopusby microarray: temporal dissection of the signalling pathway using a chemical inhibitor. Genes To Cells, 2004, 9, 749-761.	0.5	43
103	The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes To Cells, 2004, 9, 1249-1264.	0.5	21
104	Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO Reports, 2004, 5, 734-739.	2.0	35
105	Effects of 17β-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos. General and Comparative Endocrinology, 2004, 138, 228-236.	0.8	73
106	Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation, 2004, 72, 48-55.	1.0	38
107	Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree,Salix sachalinensis. Journal of Forest Research, 2003, 8, 9-16.	0.7	30
108	The prickle-Related Gene in Vertebrates Is Essential for Gastrulation Cell Movements. Current Biology, 2003, 13, 674-679.	1.8	179

#	Article	IF	CITATIONS
109	Planar cell polarity genes and neural tube closure. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 318-324.	3.6	68
110	Flowering system of heterodichogamous Juglans ailanthifolia. Plant Species Biology, 2003, 18, 75-84.	0.6	25
111	Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochemical and Biophysical Research Communications, 2003, 304, 223-228.	1.0	158
112	Xenopus Nbx, a novel NK-1 related gene essential for neural crest formation. Developmental Biology, 2003, 257, 30-40.	0.9	16
113	A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components. Gene, 2003, 317, 165-185.	1.0	21
114	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca 2+ Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	1.1	503
115	Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development (Cambridge), 2003, 130, 2129-2138.	1.2	166
116	Hox Proteins Functionally Cooperate with the GC Box-binding Protein System through Distinct Domains. Journal of Biological Chemistry, 2003, 278, 30148-30156.	1.6	39
117	Construction of a cDNA Microarray Derived from the Ascidian Ciona intestinalis. Zoological Science, 2003, 20, 1223-1229.	0.3	33
118	Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development (Cambridge), 2003, 130, 4037-4046.	1.2	231
119	PKCÂ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes and Development, 2003, 17, 1663-1676.	2.7	159
120	2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity in the Zebrafish Embryo: Altered Regional Blood Flow and Impaired Lower Jaw Development. Toxicological Sciences, 2002, 65, 192-199.	1.4	138
121	Inhibition of BMP Activity by the FGF Signal Promotes Posterior Neural Development in Zebrafish. Developmental Biology, 2002, 244, 9-20.	0.9	60
122	Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mechanisms of Development, 2002, 119, 239-249.	1.7	99
123	Action Range of BMP Is Defined by Its N-Terminal Basic Amino Acid Core. Current Biology, 2002, 12, 205-209.	1.8	162
124	Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. Journal of Cellular Physiology, 2002, 193, 225-232.	2.0	93
125	Involvement of NLK and Sox11 in neural induction inXenopusdevelopment. Genes To Cells, 2002, 7, 487-496.	0.5	62
126	A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO Journal, 2002, 21, 1063-1073.	3.5	88

#	Article	IF	CITATIONS
127	Follistatin Inhibits the Function of the Oocyte-Derived Factor BMP-15. Biochemical and Biophysical Research Communications, 2001, 289, 961-966.	1.0	112
128	Hypodermal Expression of Caenorhabditis elegans TGF-β Type I Receptor SMA-6 Is Essential for the Growth and Maintenance of Body Length. Developmental Biology, 2001, 240, 32-45.	0.9	61
129	Thyroid-hormone-dependent and fibroblast-specific expression of BMP-4 correlates with adult epithelial development during amphibian intestinal remodeling. Cell and Tissue Research, 2001, 303, 187-195.	1.5	34
130	BIP, a BRAM-interacting protein involved in TGF-β signalling, regulates body length inCaenorhabditis elegans. Genes To Cells, 2001, 6, 599-606.	0.5	36
131	Visualization of endogenous BMP signaling during Xenopus development. Differentiation, 2001, 67, 33-40.	1.0	39
132	Dlxin-1, a Novel Protein That Binds Dlx5 and Regulates Its Transcriptional Function. Journal of Biological Chemistry, 2001, 276, 5331-5338.	1.6	95
133	Ventroptin: A BMP-4 Antagonist Expressed in a Double-Gradient Pattern in the Retina. Science, 2001, 293, 111-115.	6.0	178
134	Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development (Cambridge), 2001, 128, 2769-2779.	1.2	37
135	Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers, 2000, 55, 399-406.	1.2	53
136	Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature, 2000, 403, 781-785.	13.7	439
137	TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development. Molecular and Cellular Biology, 2000, 20, 3015-3026.	1.1	116
138	Dorsal Spinal Cord Inhibits Oligodendrocyte Development. Developmental Biology, 2000, 227, 42-55.	0.9	49
139	The Decapentaplegic morphogen gradient regulates the notal wingless expression through induction of pannier and u-shaped in Drosophila. Mechanisms of Development, 2000, 96, 37-49.	1.7	32
140	Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mechanisms of Development, 2000, 91, 131-141.	1.7	45
141	Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. , 2000, 55, 399.		1
142	Protein-Protein Interactions. , 2000, , 87-113.		0
143	Isolation and Characterization of Bone Morphogenetic Protein-binding Proteins from the Early Xenopus Embryo. Journal of Biological Chemistry, 1999, 274, 26843-26849.	1.6	26
144	Dual specificity of activin type II receptor ActRIIb in dorso-ventral patterning during zebrafish embryogenesis. Development Growth and Differentiation, 1999, 41, 119-133.	0.6	29

#	Article	IF	CITATIONS
145	Identification and characterization of E-APC, a novel Drosophila homologue of the tumour suppressor APC. Genes To Cells, 1999, 4, 465-474.	0.5	30
146	Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signalling. Genes To Cells, 1999, 4, 583-591.	0.5	25
147	Negative Regulation of Wingless Signaling by D-Axin, a Drosophila Homolog of Axin. Science, 1999, 283, 1739-1742.	6.0	190
148	Restricted expression of the receptor serine/threonine kinase BMPR-IB in zebrafish. Mechanisms of Development, 1999, 82, 219-222.	1.7	17
149	Extracellular Matrix-Associated Bone Morphogenetic Proteins Are Essential for Differentiation of Murine Osteoblastic Cells <i>in Vitro</i> ¹ . Endocrinology, 1999, 140, 2125-2133.	1.4	138
150	A BMP-Inducible Gene, Dlx5, Regulates Osteoblast Differentiation and Mesoderm Induction. Developmental Biology, 1999, 208, 123-133.	0.9	187
151	p38 Mitogen-Activated Protein Kinase Can Be Involved in Transforming Growth Factor β Superfamily Signal Transduction in <i>Drosophila</i> Wing Morphogenesis. Molecular and Cellular Biology, 1999, 19, 2322-2329.	1.1	157
152	BRAM1, a BMP receptorâ€associated molecule involved in BMP signalling. Genes To Cells, 1998, 3, 257-264.	0.5	46
153	Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in earlyXenopusembryo. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9337-9342.	3.3	411
154	A Kinase Domain-truncated Type I Receptor Blocks Bone Morphogenetic Protein-2-induced Signal Transduction in C2C12 Myoblasts. Journal of Biological Chemistry, 1997, 272, 22046-22052.	1.6	76
155	Interaction between Soluble Type I Receptor for Bone Morphogenetic Protein and Bone Morphogenetic Protein-4. Journal of Biological Chemistry, 1997, 272, 11535-11540.	1.6	76
156	Mesoderm Induction by BMP-4 and -7 Heterodimers. Biochemical and Biophysical Research Communications, 1997, 232, 153-156.	1.0	141
157	Regulation of Epidermal Induction by BMP2 and BMP7 Signaling. Developmental Biology, 1997, 189, 112-122.	0.9	100
158	High-Frequency Generation of Transgenic Zebrafish Which Reliably Express GFP in Whole Muscles or the Whole Body by Using Promoters of Zebrafish Origin. Developmental Biology, 1997, 192, 289-299.	0.9	400
159	Constitutively Active BMP Type I Receptors Transduce BMP-2 Signals without the Ligand in C2C12 Myoblasts. Experimental Cell Research, 1997, 235, 362-369.	1.2	106
160	Conservation of BMP signaling in zebrafish mesoderm patterning. Mechanisms of Development, 1997, 61, 75-88.	1.7	200
161	An ascidian homologue of vertebrate BMPs-5–8 is expressed in the midline of the anterior neuroectoderm and in the midline of the ventral epidermis of the embryo. Mechanisms of Development, 1996, 57, 181-190.	1.7	39
162	Heart formative factor(s) is localized in the anterior endoderm of early Xenopus neurula. Roux's Archives of Developmental Biology, 1996, 205, 282-289.	1.2	6

#	Article	IF	CITATIONS
163	BMP-4 mediates interacting signals between the neural tube and skin along the dorsal midline. Genes To Cells, 1996, 1, 775-783.	0.5	35
164	Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Development Growth and Differentiation, 1995, 37, 581-588.	0.6	45
165	BMP-4 Regulates the Dorsal–Ventral Differences in FGF/MAPKK-Mediated Mesoderm Induction inXenopus. Developmental Biology, 1995, 172, 242-252.	0.9	55
166	Localized BMP-4 Mediates Dorsal/Ventral Patterning in the Early Xenopus Embryo. Developmental Biology, 1995, 169, 37-50.	0.9	224
167	Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography. Japanese Journal of Applied Physics, 1994, 33, L556-L558.	0.8	7
168	Localization of thymosin β4 to the neural tissues during the development of Xenopus laevis, as studied by in situ hybridization and immunohistochemistry. Developmental Brain Research, 1994, 79, 177-185.	2.1	21
169	Regulation of Primary Erythropoiesis in the Ventral Mesoderm of Xenopus Gastrula Embryo: Evidence for the Expression of a Stimulatory Factor(s) in Animal Pole Tissue. Developmental Biology, 1994, 161, 522-529.	0.9	53
170	Cloning of an isoform of mouse TGF- \hat{I}^2 type II receptor gene. FEBS Letters, 1994, 355, 19-22.	1.3	35
171	Presence of High Molecular Weight Forms of BMP-2 in Early <i>Xenopus</i> Embryos. Growth Factors, 1993, 8, 165-172.	0.5	12
172	Immunodetection of <i>Xenopus</i> Bone Morphogenetic Protein-4 in Early Embryos. Growth Factors, 1993, 8, 173-176.	0.5	17
173	Identification of Bone Morphogenetic Protein-2 in Early <i>Xenopus laevis</i> Embryos. Growth Factors, 1992, 7, 233-240.	0.5	19
174	Genes for bone morphogenetic proteins are differentially transcribed in early amphibian embryos. Biochemical and Biophysical Research Communications, 1992, 186, 1487-1495.	1.0	136
175	Expression of thymosin β4 gene during Xenopus laevis embryogenesis. Biochemical and Biophysical Research Communications, 1992, 184, 93-99.	1.0	13
176	Regulation of activin βA mRNA level by cAMP. Biochemical and Biophysical Research Communications, 1992, 182, 773-778.	1.0	18
177	Multiple genes forXenopusactivin receptor expressed during early embryogenesis. FEBS Letters, 1992, 303, 81-84.	1.3	25
178	Structure and sequence analysis of the human activin βAsubunit gene. DNA Sequence, 1991, 2, 103-110.	0.7	25
179	Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux's Archives of Developmental Biology, 1990, 198, 330-335.	1.2	327
180	Activin as a cell differentiation factor. Progress in Growth Factor Research, 1990, 2, 113-124.	1.7	37

#	Article	IF	CITATIONS
181	Inhibins and Activins. Vitamins and Hormones, 1988, 44, 1-46.	0.7	45
182	Follistatin specifically inhibits pituitary follicle stimulating hormone release invitro. Biochemical and Biophysical Research Communications, 1987, 149, 133-139.	1.0	94
183	Immunohistochemical detection of inhibin in the gonad. Biochemical and Biophysical Research Communications, 1987, 142, 23-30.	1.0	98
184	Isolation and partial characterization of basic fibroblast growth factor from bovine testis. Molecular and Cellular Endocrinology, 1987, 49, 189-194.	1.6	101
185	Distribution of fibroblast growth factors (FGFs) in tissues and structure-function studies with synthetic fragments of basic FGF. Journal of Cellular Physiology, 1987, 133, 101-106.	2.0	33
186	α- and β-Heparin Binding Growth Factors: Chemistry and Biology of Acidic and Basic Fibroblast Growth Factors. , 1987, , 36-40.		0
187	Inhibin and beta type transforming growth factor (TGFβ) have opposite modulating effects on the follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells. Biochemical and Biophysical Research Communications, 1986, 136, 969-975.	1.0	225
188	Type beta transforming growth factor (TGF-β) is a potent stimulator of the basal secretion of follicle stimulating hormone (FSH) in a pituitary monolayer system. Biochemical and Biophysical Research Communications, 1986, 135, 950-956.	1.0	119
189	A homodimer of the \hat{l}^2 -subunits of inhibin a stimulates the secretion of pituitary follicle stimulating hormone. Biochemical and Biophysical Research Communications, 1986, 138, 1129-1137.	1.0	175
190	Isolation of an amino terminal extended form of basic fibroblast growth factor. Biochemical and Biophysical Research Communications, 1986, 138, 580-588.	1.0	74
191	Purification and partial characterization of a mitogenic factor from bovine liver: structural homology with basic fibroblast growth factor. Regulatory Peptides, 1986, 16, 135-145.	1.9	17
192	Pituitary FSH is released by a heterodimer of the Î ² -subunits from the two forms of inhibin. Nature, 1986, 321, 779-782.	13.7	1,124
193	Molecular structure of human renin and its gene Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1985, 61, 257-260.	1.6	3
194	Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-β. Nature, 1985, 318, 659-663.	13.7	769
195	Identification of plasma inactive renin as prorenin with a site-directed antibody. Biochemical and Biophysical Research Communications, 1985, 126, 641-645.	1.0	58
196	Primary structure of bovine brain acidic fibroblast growth factor (FGF). Biochemical and Biophysical Research Communications, 1985, 133, 554-562.	1.0	217
197	Synthesis and in vitro bioactivity of human growth hormone-releasing factor analogs substituted at position-1. Biochemical and Biophysical Research Communications, 1984, 122, 304-310.	1.0	48
198	Synthesis and invitro bioactivity of C-terminal deleted analogs of human growth hormone-releasing factor. Biochemical and Biophysical Research Communications, 1984, 123, 854-861.	1.0	71

#	Article	IF	CITATIONS
199	Alveolar soft-part sarcoma. American Journal of Surgical Pathology, 1983, 7, 679-690.	2.1	76
200	Dynamic responses of active and inactive renin and plasma norepinephrine during exercise in normal man International Heart Journal, 1982, 23, 545-551.	0.6	15
201	PLASMA INACTIVE RENIN IN NORMAL SUBJECTS AND PATIENTS WITH DIABETIC NEPHROPATHY AND RENINSECRETING TUMORS: COMPARISON WITH RENAL RENIN . Biomedical Research, 1982, 3, 411-416.	0.3	2
202	Demonstration of the formation of renin and renin-binding protein complex using high-performance liquid chromatography. Biomedical Applications, 1981, 225, 329-334.	1.7	6