Trond Lamark

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/640312/trond-lamark-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55	22,434	42	58
papers	citations	h-index	g-index
58 ext. papers	25,471 ext. citations	8.7 avg, IF	6.71 L-index

#	Paper	IF	Citations
55	Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy. <i>Journal of Cell Biology</i> , 2021 , 220,	7.3	6
54	SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. <i>Journal of Cell Biology</i> , 2021 , 220,	7.3	7
53	The soluble reticulophagy receptor CALCOCO1 is also a Golgiphagy receptor. <i>Autophagy</i> , 2021 , 17, 205	1±2052	2 0
52	Mechanisms of Selective Autophagy. Annual Review of Cell and Developmental Biology, 2021, 37, 143-16	59 12.6	20
51	SAMM50 is a receptor for basal piecemeal mitophagy and acts with SQSTM1/p62 in OXPHOS-induced mitophagy. <i>Autophagy</i> , 2021 , 17, 2656-2658	10.2	0
50	Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. <i>Nature Communications</i> , 2020 , 11, 440	17.4	33
49	CALCOCO1 acts with VAMP-associated proteins to mediate ER-phagy. <i>EMBO Journal</i> , 2020 , 39, e10364	913	43
48	NIMA-related kinase 9thediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. <i>Journal of Biological Chemistry</i> , 2020 , 295, 1240-1260	5.4	9
47	NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. <i>Journal of Biological Chemistry</i> , 2020 , 295, 1240-1260	5.4	12
46	CALCOCO1 is a soluble reticulophagy receptor. <i>Autophagy</i> , 2020 , 16, 1729-1731	10.2	4
45	Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. <i>Journal of Molecular Biology</i> , 2020 , 432, 80-103	6.5	226
44	The FMRpolyGlycine Protein Mediates Aggregate Formation and Toxicity Independent of the CGG mRNA Hairpin in a Cellular Model for FXTAS. <i>Frontiers in Genetics</i> , 2019 , 10, 249	4.5	12
43	NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy. Developmental Cell, 2019, 49, 509-525	.e1b22	67
42	Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. <i>Autophagy</i> , 2019 , 15, 1333-1355	10.2	47
41	NIPSNAP1 and NIPSNAP2 act as "eat me" signals to allow sustained recruitment of autophagy receptors during mitophagy. <i>Autophagy</i> , 2019 , 15, 1845-1847	10.2	18
40	TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. <i>Journal of Cell Science</i> , 2019 , 132,	5.3	9
39	ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. <i>Autophagy</i> , 2017 , 13, 834-853	10.2	62

38	FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Reports, 2017, 18, 947-961	6.5	198
37	Regulation of selective autophagy: the p62/SQSTM1 paradigm. <i>Essays in Biochemistry</i> , 2017 , 61, 609-62	2 4 7.6	263
36	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
35	p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. Journal of Biological Chemistry, 2015 , 290, 14945-62	5.4	47
34	The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. <i>Cell Reports</i> , 2015 , 11, 748-58	10.6	136
33	Autophagy mediates degradation of nuclear lamina. <i>Nature</i> , 2015 , 527, 105-9	50.4	365
32	FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. <i>Journal of Biological Chemistry</i> , 2015 , 290, 29361-74	5.4	83
31	The LIR motif - crucial for selective autophagy. <i>Journal of Cell Science</i> , 2013 , 126, 3237-47	5.3	530
30	NBR1 acts as an autophagy receptor for peroxisomes. <i>Journal of Cell Science</i> , 2013 , 126, 939-52	5.3	233
29	ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. <i>Journal of Biological Chemistry</i> , 2012 , 287, 39275-90	5.4	213
28	Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. <i>Cell Communication and Signaling</i> , 2012 , 10, 28	7.5	46
27	Guidelines for the use and interpretation of assays for monitoring autophagy. <i>Autophagy</i> , 2012 , 8, 445-	-5 44 .2	2783
26	Aggrephagy: selective disposal of protein aggregates by macroautophagy. <i>International Journal of Cell Biology</i> , 2012 , 2012, 736905	2.6	278
25	DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription. <i>PLoS ONE</i> , 2012 , 7, e34034	3.7	43
24	Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. <i>Autophagy</i> , 2011 , 7, 993-1010	10.2	220
23	Selective autophagy mediated by autophagic adapter proteins. <i>Autophagy</i> , 2011 , 7, 279-96	10.2	1269
22	FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. <i>Journal of Cell Biology</i> , 2010 , 188, 253-69	7.3	432
21	p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. <i>Autophagy</i> , 2010 , 6, 330-44	10.2	224

20	Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. <i>Journal of Cell Biology</i> , 2010 , 190, 523-31	7.3	180
19	Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. <i>Journal of Biological Chemistry</i> , 2010 , 285, 5941-53	5.4	160
18	p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. <i>Journal of Biological Chemistry</i> , 2010 , 285, 22576-91	5.4	928
17	A reporter cell system to monitor autophagy based on p62/SQSTM1. <i>Autophagy</i> , 2010 , 6, 784-93	10.2	113
16	The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. <i>Molecular Cell</i> , 2010 , 38, 265-79	17.6	326
15	Autophagy: links with the proteasome. <i>Current Opinion in Cell Biology</i> , 2010 , 22, 192-8	9	107
14	Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. <i>Autophagy</i> , 2009 , 5, 298-302	10.2	97
13	NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. <i>Cell Cycle</i> , 2009 , 8, 1986-90	4.7	338
12	The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. <i>Journal of Immunology</i> , 2009 , 183, 5909-16	5.3	430
11	A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. <i>Molecular Cell</i> , 2009 , 33, 505-16	17.6	821
10	Monitoring autophagic degradation of p62/SQSTM1. <i>Methods in Enzymology</i> , 2009 , 452, 181-97	1.7	749
9	NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. <i>Autophagy</i> , 2009 , 5, 732-3	10.2	138
8	p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. <i>Journal of Biological Chemistry</i> , 2007 , 282, 24131-45	5.4	3069
7	p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. <i>Autophagy</i> , 2006 , 2, 138-9	10.2	249
6	Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. Journal of Biological Chemistry, 2006 , 281, 28450-9	5.4	84
5	p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. <i>Journal of Cell Biology</i> , 2005 , 171, 603-14	7-3	2443
4	Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. Journal of Biological Chemistry, 2003 , 278, 34568-81	5.4	278
3	Expression of active human C1 inhibitor serpin domain in Escherichia coli. <i>Protein Expression and Purification</i> , 2001 , 22, 349-58	2	28

LIST OF PUBLICATIONS

Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. *Plant Journal*, **1994**, 6, 749-58

Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. *FEMS Microbiology Letters*, **1992**, 75, 149-54