Hongbo Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640288/publications.pdf Version: 2024-02-01

HONGRO NING

#	Article	IF	CITATIONS
1	Experimental and kinetic modeling study on the ignition characteristics of methyl acrylate and vinyl acetate: Effect of C C double bond. Energy, 2022, 245, 123257.	8.8	2
2	Effects of Anharmonicity, Recrossing, Tunneling, and Pressure on the H-Abstractions from Dimethylamine by Triplets O and O ₂ . Journal of Physical Chemistry A, 2022, 126, 825-833.	2.5	2
3	Ignition characteristics of 1-Nitropropane: Experimental measurements and kinetic modeling. Fuel, 2022, 317, 123385.	6.4	7
4	A CCA-ONIOM-DFT framework for accurate and efficient determination of thermodynamics and Kinetics: Case study of cyclopentane reaction with hydroxyl radical. Chemical Physics Letters, 2022, 801, 139714.	2.6	0
5	Combustion kinetics of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e3358" altimg="si330.svg"><mml:mi>n</mml:mi></mml:math> -propylamine: Theoretical calculations and ignition delay time measurements. Fuel, 2022, 324, 124710.	6.4	3
6	Shock tube measurement of NO time-histories in nitromethane pyrolysis using a quantum cascade laser at 5.26 µm. Proceedings of the Combustion Institute, 2021, 38, 1745-1752.	3.9	8
7	Insight into the low-temperature oxidation of dimethylamine radicals. Proceedings of the Combustion Institute, 2021, 38, 853-860.	3.9	5
8	Abnormal promotion effect of nitromethane on ethane ignition. Combustion and Flame, 2021, 223, 267-270.	5.2	4
9	Implication of Sensitive Reactions to Ignition of Methyl Pentanoate: H-Abstraction Reactions by H and CH3 Radicals. Chemical Research in Chinese Universities, 2021, 37, 711-717.	2.6	4
10	Multistructural Variational Reaction Kinetics of the Simplest Unsaturated Methyl Ester: H-Abstraction from Methyl Acrylate by H, OH, CH ₃ , and HO ₂ Radicals. Journal of Physical Chemistry A, 2021, 125, 5103-5116.	2.5	11
11	Ignition characteristics of nitromethane-doped ethanol in a heated shock tube. Energetic Materials Frontiers, 2021, 2, 174-180.	3.2	4
12	Accurate reaction barriers and rate constants of H-abstraction from primary, secondary, and tertiary amines by H atom determined with the isodesmic reaction method. Chemical Physics Letters, 2021, 776, 138708.	2.6	3
13	Exploring the pyrolysis chemistry of prototype aromatic ester phenyl formate: Reaction pathways, thermodynamics and kinetics. Combustion and Flame, 2020, 211, 337-346.	5.2	15
14	An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation. Experimental Thermal and Fluid Science, 2020, 112, 110013.	2.7	28
15	Kinetic modeling of methyl pentanoate pyrolysis based on <i>ab initio</i> calculations. Physical Chemistry Chemical Physics, 2020, 22, 17978-17986.	2.8	8
16	Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10). Combustion and Flame, 2020, 216, 82-91.	5.2	8
17	Reaction pathways and kinetics study on a syngas combustion system: CO + HO2in an H2O environment. Physical Chemistry Chemical Physics, 2020, 22, 5797-5806.	2.8	2
18	Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements. Proceedings of the Combustion Institute, 2019, 37, 1329-1336.	3.9	20

#	Article	IF	CITATIONS
19	Significance of reaction CH3 + NO = H2CN + OH in two-stage ignition of nitromethane. Fuel, 201 115956.	.9, <u>25</u> 6,	10
20	Benchmarking dual-level MS-Tor and DLPNO-CCSD(T) methods for H-abstraction from methyl pentanoate by an OH radical. Physical Chemistry Chemical Physics, 2019, 21, 20857-20867.	2.8	14
21	xmins:mmi="http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath	ub ø.4 /mm	l:mrow>
22	Chemical kinetics of H-abstractions from dimethyl amine by H, CH ₃ , OH, and HO ₂ radicals with multi-structural torsional anharmonicity. Physical Chemistry Chemical Physics, 2019, 21, 12685-12696.	2.8	21
23	Accurate entropy calculation for large flexible hydrocarbons using a multi-structural 2-dimensional torsion method. Physical Chemistry Chemical Physics, 2019, 21, 10003-10010.	2.8	12
24	Cascaded group-additivity ONIOM: A new method to approach CCSD(T)/CBS energies of large aliphatic hydrocarbons. Combustion and Flame, 2019, 201, 31-43.	5.2	9
25	Accurate prediction of bond dissociation energies of large n-alkanes using ONIOM-CCSD(T)/CBS methods. Chemical Physics Letters, 2018, 699, 139-145.	2.6	10
26	<i>In Situ</i> Flame Temperature Measurements Using a Mid-Infrared Two-Line H ₂ O Laser-Absorption Thermometry. Combustion Science and Technology, 2018, 190, 393-408.	2.3	32
27	Characterization of Temperature and Soot Volume Fraction in Laminar Premixed Flames: Laser Absorption/Extinction Measurement and Two-Dimensional Computational Fluid Dynamics Modeling. Energy & Fuels, 2018, 32, 12962-12970.	5.1	14
28	Pressure-dependent kinetics of methyl formate reactions with OH at combustion, atmospheric and interstellar temperatures. Physical Chemistry Chemical Physics, 2018, 20, 26190-26199.	2.8	40
29	A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate. Physical Chemistry Chemical Physics, 2018, 20, 21280-21285.	2.8	13
30	Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	6
31	Combined Ab Initio, Kinetic Modeling, and Shock Tube Study of the Thermal Decomposition of Ethyl Formate. Journal of Physical Chemistry A, 2017, 121, 6568-6579.	2.5	14
32	Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate. Journal of Physical Chemistry A, 2017, 121, 6304-6313.	2.5	22
33	Chemical kinetic modeling and shock tube study of methyl propanoate decomposition. Combustion and Flame, 2017, 184, 30-40.	5.2	18
34	Progress in Combustion Kinetics. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 131-153.	4.9	10
35	Kinetic Calculation and Modeling Study of 1, 3-Butadiene Pyrolysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 453-464.	4.9	2
36	Low- and intermediate-temperature oxidation of ethylcyclohexane: A theoretical study. Combustion and Flame, 2015, 162, 4167-4182.	5.2	39

Hongbo Ning

#	Article	IF	CITATIONS
37	Theoretical and kinetic study of reaction C2HÂ+ÂC3H6 on the C5H7 potential energy surface. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	12
38	Pressure-Dependent Kinetics of Initial Reactions in Iso-octane Pyrolysis. Journal of Physical Chemistry A, 2015, 119, 4093-4107.	2.5	25
39	Experimental and modeling study of thermal and catalytic cracking of n-decane. Journal of Analytical and Applied Pyrolysis, 2014, 110, 463-469.	5.5	27