Vasil Tiberkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6402702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherent Coupling of Two Remote Magnonic Resonators Mediated by Superconducting Circuits. Physical Review Letters, 2022, 128, 047701.	7.8	44
2	Ultrafast GHz-Range Swept-Tuned Spectrum Analyzer with 20 ns Temporal Resolution Based on a Spin-Torque Nano-Oscillator with a Uniformly Magnetized "Free―Layer. Nano Letters, 2022, 22, 1874-1879.	9.1	8
3	Theory of Antiferromagnet-Based Detector of Terahertz Frequency Signals. Magnetochemistry, 2022, 8, 26.	2.4	9
4	Lumped circuit model for inductive antenna spin-wave transducers. Scientific Reports, 2022, 12, 3796. Tunable Magnetically Induced Transparency Spectra in Magnon-Magnon Coupled symplemeth	3.3	8
5	xmlns:mml= [®] http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mi mathvariant="normal">Y<mml:mn>3</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi>Fe</mml:mi> mathvariant="normal">O<mml:mn>12</mml:mn></mml:msub> <mml:mo>/</mml:mo> //mml:math	mml <mark>3:6</mark> 8،>5،	</td
6	Permalloy Bilayers. Physical Review Applied, 2022, 17, Hybrid Magnonics for Short-Wavelength Spin Waves Facilitated by a Magnetic Heterostructure. Physical Review Applied, 2022, 17, .	3.8	6
7	Measurement of Microwave Signal Frequency by a Pair of Spin-Torque Microwave Diodes. IEEE Magnetics Letters, 2021, 12, 1-5.	1.1	1
8	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i> . IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	4.9	69
9	RF signal detector and energy harvester based on a spin-torque diode with perpendicular magnetic anisotropy. AIP Advances, 2021, 11, 025234.	1.3	1
10	Theory of the electric field controlled antiferromagnetic spin Hall oscillator and detector. Physical Review B, 2021, 103, .	3.2	12
11	Controlling Magnon Interaction by a Nanoscale Switch. ACS Applied Materials & Interfaces, 2021, 13, 20288-20295.	8.0	13
12	Phase Nonreciprocity of Microwaveâ€Frequency Surface Acoustic Waves in Hybrid Heterostructures with Magnetoelastic Coupling. Advanced Electronic Materials, 2021, 7, 2100263.	5.1	14
13	Theory of three-magnon interaction in a vortex-state magnetic nanodot. Physical Review B, 2021, 103, .	3.2	19
14	Control of the Bose-Einstein Condensation of Magnons by the Spin Hall Effect. Physical Review Letters, 2021, 127, 237203.	7.8	11
15	Hybrid magnonics: Physics, circuits, and applications for coherent information processing. Journal of Applied Physics, 2020, 128, .	2.5	141
16	Ultrafast Sweep-Tuned Spectrum Analyzer with Temporal Resolution Based on a Spin-Torque Nano-Oscillator. Nano Letters, 2020, 20, 6104-6111.	9.1	34
17	Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Applied Physics Letters, 2020, 117, .	3.3	31
18	Spin-wave modes localized on isolated defects in a two-dimensional array of dipolarly coupled magnetic nanodots. Physical Review B, 2020, 102, .	3.2	2

#	Article	IF	CITATIONS
19	Dipole-dominated dissipative magnetic solitons in quasi-one-dimensional spin-torque oscillators. Low Temperature Physics, 2020, 46, 773-778.	0.6	1
20	Terahertz frequency spectrum analysis with a nanoscale antiferromagnetic tunnel junction. Journal of Applied Physics, 2020, 127, .	2.5	22
21	Coherent long-range transfer of angular momentum between magnon Kittel modes by phonons. Physical Review B, 2020, 101, .	3.2	94
22	Voltage-Controlled Anisotropy and Current-Induced Magnetization Dynamics in Antiferromagnetic-Piezoelectric Layered Heterostructures. Physical Review Applied, 2020, 13, .	3.8	18
23	Spin-wave transmission through an internal boundary: Beyond the scalar approximation. Physical Review B, 2020, 101, .	3.2	12
24	Bose–Einstein condensation of quasiparticles by rapid cooling. Nature Nanotechnology, 2020, 15, 457-461.	31.5	52
25	Maximum Detected Frequency of a Detector of Terahertz Frequency Signals based on an Antiferromagnetic Tunnel Junction. , 2020, , .		0
26	Hamiltonian formalism for nonlinear spin wave dynamics under antisymmetric interactions: Application to Dzyaloshinskii-Moriya interaction. Physical Review B, 2019, 99, .	3.2	15
27	Correction of Phase Errors in a Spin-Wave Transmission Line by Nonadiabatic Parametric Pumping. Physical Review Applied, 2019, 11, .	3.8	3
28	Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths. Physical Review Letters, 2019, 122, 117202.	7.8	69
29	Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nature Nanotechnology, 2019, 14, 328-333.	31.5	115
30	Wide-Band Nonreciprocity of Surface Acoustic Waves Induced by Magnetoelastic Coupling with a Synthetic Antiferromagnet. Physical Review Applied, 2019, 12, .	3.8	46
31	Recent Trends in Microwave Magnetism and Superconductivity. Ukrainian Journal of Physics, 2019, 64, 888.	0.2	19
32	Magnon Bose–Einstein Condensate and Supercurrents Over a Wide Temperature Range. Ukrainian Journal of Physics, 2019, 64, 927.	0.2	5
33	Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque. Physical Review B, 2018, 97, .	3.2	35
34	Amplification and stabilization of large-amplitude propagating spin waves by parametric pumping. Applied Physics Letters, 2018, 112, .	3.3	21
35	Micromagnetic simulations of spin-Hall driven dynamics in an antiferromagnet. , 2018, , .		0
36	Generators of THz-Frequency Signals Based on Antiferromagnetic Nanastructures. , 2018, , .		0

3

#	Article	IF	CITATIONS
37	Terahertz-frequency AC signal source based on antiferromagnetic tunnel junction. , 2018, , .		Ο
38	Ultra-fast logic devices using artificial "neurons―based on antiferromagnetic pulse generators. Journal of Applied Physics, 2018, 124, .	2.5	36
39	Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Scientific Reports, 2018, 8, 15727.	3.3	61
40	Damping of linear spin-wave modes in magnetic nanostructures: Local, nonlocal, and coordinate-dependent damping. Physical Review B, 2018, 98, .	3.2	24
41	Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator. Applied Physics Letters, 2018, 113, .	3.3	23
42	Bullets and droplets: Two-dimensional spin-wave solitons in modern magnonics (Review Article). Low Temperature Physics, 2018, 44, 602-617.	0.6	22
43	Terahertz-Frequency Signal Source Based on an Antiferromagnetic Tunnel Junction. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	35
44	Nonreciprocal Surface Acoustic Waves in Multilayers with Magnetoelastic and Interfacial Dzyaloshinskii-Moriya Interactions. Physical Review Applied, 2018, 9, .	3.8	74
45	Parametric autoexcitation of magnetic droplet soliton perimeter modes. Physical Review B, 2017, 95, .	3.2	32
46	Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Scientific Reports, 2017, 7, 43705.	3.3	207
47	Antiferromagnetic spin current rectifier. AIP Advances, 2017, 7, .	1.3	26
48	Low Power Microwave Signal Detection With a Spin-Torque Nano-Oscillator in the Active Self-Oscillating Regime. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	12
49	Parametric Resonance of Magnetization Excited by Electric Field. Nano Letters, 2017, 17, 572-577.	9.1	71
50	Magnon-magnon interactions in a room-temperature magnonic Bose-Einstein condensate. Physical Review B, 2017, 96, .	3.2	28
51	Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet. Physical Review Applied, 2017, 8, .	3.8	92
52	Excitation of Spin Waves in an In-Plane-Magnetized Ferromagnetic Nanowire Using Voltage-Controlled Magnetic Anisotropy. Physical Review Applied, 2017, 7, .	3.8	23
53	Nonreciprocal Spin Waves in a Magnonic Crystal with In-Plane Static Magnetization. Spin, 2016, 06, 1640013.	1.3	6
54	Bias-free spin-wave phase shifter for magnonic logic. AIP Advances, 2016, 6, 065103.	1.3	28

#	Article	IF	CITATIONS
55	Mutual synchronization of nano-oscillators driven by pure spin current. Applied Physics Letters, 2016, 109, .	3.3	11
56	Magnetic vortex cores as tunable spin-wave emitters. Nature Nanotechnology, 2016, 11, 948-953.	31.5	169
57	Interaction of Microwave Photons with Nanostructured Magnetic Metasurfaces. Physical Review Applied, 2016, 5, .	3.8	5
58	Transformation of spin current by antiferromagnetic insulators. Physical Review B, 2016, 93, .	3.2	88
59	Theoretical formalism for collective spin-wave edge excitations in arrays of dipolarly interacting magnetic nanodots. Physical Review B, 2016, 93, .	3.2	28
60	Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy. Scientific Reports, 2016, 6, 25018.	3.3	45
61	Linear Magnetization Dynamics in an Array of Dipolarly Coupled Magnetic Nanodots. Handbook of Surface Science, 2015, 5, 215-241.	0.3	0
62	Magnonic crystal as a delay line for low-noise auto-oscillators. Applied Physics Letters, 2015, 107, .	3.3	28
63	Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves. Applied Physics Letters, 2015, 107, .	3.3	16
64	Reduction of phase noise in nanowire spin orbit torque oscillators. Scientific Reports, 2015, 5, 16942.	3.3	38
65	Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots. Journal of Magnetism and Magnetic Materials, 2015, 384, 166-174.	2.3	10
66	Electrodynamic boundary conditions for planar arrays of thin magnetic elements. Applied Physics Letters, 2015, 107, 082405.	3.3	4
67	Modulation bandwidth of spin torque oscillators under current modulation. Applied Physics Letters, 2014, 105, 152401.	3.3	34
68	Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nature Communications, 2014, 5, 3452.	12.8	101
69	Current-driven gyrotropic mode of a magnetic vortex as a nonisochronous auto-oscillator. Physical Review B, 2014, 89, .	3.2	13
70	Parametric Excitation of Spin Waves by Voltage-Controlled Magnetic Anisotropy. Physical Review Applied, 2014, 1, .	3.8	64
71	Synchronization of spin Hall nano-oscillators to external microwave signals. Nature Communications, 2014, 5, 3179.	12.8	116
72	Spin-wave edge modes in finite arrays of dipolarly coupled magnetic nanopillars. Physical Review B, 2014, 90, .	3.2	47

#	Article	IF	CITATIONS
73	Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback. Scientific Reports, 2014, 4, 3873.	3.3	32
74	Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Physical Review B, 2013, 88, .	3.2	12
75	Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars. Applied Physics Letters, 2013, 103, .	3.3	46
76	Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots. IEEE Magnetics Letters, 2013, 4, 4000404-4000404.	1.1	4
77	Control and Manipulation of the Dynamic Response of Interacting Spin Vortices. IEEE Transactions on Magnetics, 2013, 49, 3081-3088.	2.1	0
78	Theory of ground-state switching in an array of magnetic nanodots by application of a short external magnetic field pulse. Physical Review B, 2013, 87, .	3.2	19
79	Nonlinear Ferromagnetic Resonance in Nanostructures Having Discrete Spectrum of Spin-Wave Modes. IEEE Magnetics Letters, 2013, 4, 4000504-4000504.	1.1	23
80	Hysteresis regime in the operation of a dual-free-layer spin-torque nano-oscillator with out-of-plane counter-precessing magnetic moments. Journal of Applied Physics, 2013, 114, .	2.5	13
81	Influence of Temperature on the Performance of a Spin-Torque Microwave Detector. IEEE Transactions on Magnetics, 2012, 48, 3807-3810.	2.1	18
82	Collective spin-wave excitations in a two-dimensional array of coupled magnetic nanodots. Physical Review B, 2012, 85, .	3.2	85
83	From chaos to selective ordering of vortex cores in interacting mesomagnets. Nature Communications, 2012, 3, 1330.	12.8	58
84	Direct detection of magnon spin transport by the inverse spin Hall effect. Applied Physics Letters, 2012, 100, .	3.3	121
85	Oscillatory Energy Exchange between Waves Coupled by a Dynamic Artificial Crystal. Physical Review Letters, 2012, 108, 015505.	7.8	48
86	Linewidth of higher harmonics in a nonisochronous auto-oscillator: Application to spin-torque nano-oscillators. Physical Review B, 2012, 86, .	3.2	14
87	Magnetic nano-oscillator driven by pure spinÂcurrent. Nature Materials, 2012, 11, 1028-1031.	27.5	608
88	Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators. Physical Review B, 2012, 85, .	3.2	49
89	Fast switching of a ground state of a reconfigurable array of magnetic nano-dots. Applied Physics Letters, 2012, 100, .	3.3	34
90	Storage-Recovery Phenomenon in Magnonic Crystal. Physical Review Letters, 2012, 108, 257207.	7.8	74

#	Article	IF	CITATIONS
91	Spin-torque microwave detector with out-of-plane precessing magnetic moment. Journal of Applied Physics, 2012, 111, .	2.5	45
92	Spin-Torque Nano-Oscillator as a Microwave Signal Source. IEEE Magnetics Letters, 2011, 2, 3000104-3000104.	1.1	44
93	Control of Spin Waves in a Thin Film Ferromagnetic Insulator through Interfacial Spin Scattering. Physical Review Letters, 2011, 107, 146602.	7.8	115
94	Linewidth reduction in a spin-torque nano-oscillator caused by non-conservative current-induced coupling between magnetic layers. Applied Physics Letters, 2011, 99, .	3.3	33
95	Control of spin-wave emission from spin-torque nano-oscillators by microwave pumping. Physical Review B, 2011, 83, .	3.2	24
96	Injection locking of tunnel junction oscillators to a microwave current. Applied Physics Letters, 2011, 98, .	3.3	45
97	Identification and selection rules of the spin-wave eigenmodes in a normally magnetized nanopillar. Physical Review B, 2011, 84, .	3.2	75
98	Noise properties of a resonance-type spin-torque microwave detector. Applied Physics Letters, 2011, 99, 032507.	3.3	29
99	Time-domain study of frequency-power correlation in spin-torque oscillators. Physical Review B, 2010, 81, .	3.2	22
100	Spin wave excitations of a magnetic pillar with dipolar coupling between the layers. Journal of Physics Condensed Matter, 2010, 22, 136001.	1.8	26
101	Microwave planar antennas for telecommunication devices based on magnetic nano-structures (Spin-torque nano-oscillators). , 2010, , .		0
102	Spin-torque magnetic nano-structures as microwave sources. , 2010, , .		0
103	Evolution of spin-wave modes in magnetic tunnel junction nanopillars. Physical Review B, 2010, 82, .	3.2	34
104	Oscillatory transient regime in the forced dynamics of a nonlinear auto oscillator. Physical Review B, 2010, 82, .	3.2	42
105	Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts. Physical Review Letters, 2010, 105, 217204.	7.8	176
106	Nondiffractive Subwavelength Wave Beams in a Medium with Externally Controlled Anisotropy. Physical Review Letters, 2010, 104, 197203.	7.8	102
107	All-linear time reversal by a dynamic artificial crystal. Nature Communications, 2010, 1, 141.	12.8	159
108	A frequency-controlled magnetic vortex memory. Applied Physics Letters, 2010, 96, .	3.3	141

#	Article	IF	CITATIONS
109	Parametric Excitation of a Magnetic Nanocontact by a Microwave Field. Physical Review Letters, 2010, 105, 237204.	7.8	57
110	Fractional Synchronization of Spin-Torque Nano-Oscillators. Physical Review Letters, 2010, 105, 104101.	7.8	124
111	Hysteretic synchronization of nonlinear spin-torque oscillators. Physical Review B, 2010, 82, .	3.2	38
112	Non-autonomous dynamics of a nonlinear spin-torque nano-oscillator. , 2009, , .		0
113	Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current. IEEE Transactions on Magnetics, 2009, 45, 1875-1918.	2.1	633
114	Compensation of nonlinear phase noise in an in-plane-magnetized anisotropic spin-torque oscillator. Journal of Magnetism and Magnetic Materials, 2009, 321, L53-L55.	2.3	17
115	Parametrically stimulated recovery of a microwave signal using standing spin-wave modes of a magnetic film. Physical Review B, 2009, 79, .	3.2	19
116	Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators. Applied Physics Letters, 2009, 95, .	3.3	68
117	Bistability of Vortex Core Dynamics in a Single Perpendicularly Magnetized Nanodisk. Physical Review Letters, 2009, 102, 177602.	7.8	108
118	Resonant Nonlinear Damping of Quantized Spin Waves in Ferromagnetic Nanowires: A Spin Torque Ferromagnetic Resonance Study. Physical Review Letters, 2009, 103, 167601.	7.8	61
119	Q factor of dual-tunable microwave resonators based on yttrium iron garnet and barium strontium titanate layered structures. Journal of Applied Physics, 2008, 103, 063908.	2.5	29
120	Ferromagnetic resonance force spectroscopy of individual submicron-size samples. Physical Review B, 2008, 78, .	3.2	85
121	Dynamic Origin of Azimuthal Modes Splitting in Vortex-State Magnetic Dots. Physical Review Letters, 2008, 101, 247203.	7.8	72
122	Excitation of Spin Waves by Spin-Polarized Current in Magnetic Nano-Structures. IEEE Transactions on Magnetics, 2008, 44, 1916-1927.	2.1	68
123	Temperature dependence of nonlinear auto-oscillator linewidths: Application to spin-torque nano-oscillators. Physical Review B, 2008, 78, .	3.2	62
124	Line Shape Distortion in a Nonlinear Auto-Oscillator Near Generation Threshold: Application to Spin-Torque Nano-Oscillators. Physical Review Letters, 2008, 100, 167201.	7.8	87
125	Generation Linewidth of an Auto-Oscillator with a Nonlinear Frequency Shift: Spin-Torque Nano-Oscillator. Physical Review Letters, 2008, 100, 017207.	7.8	155
126	Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle. Physical Review B, 2008, 78, .	3.2	41

#	Article	IF	CITATIONS
127	Discrete modes of a ferromagnetic stripe dipolarly coupled to a ferromagnetic film: a Brillouin light scattering study. Journal of Physics Condensed Matter, 2007, 19, 246221.	1.8	4
128	Publisher's Note: Ferromagnetic resonance spectroscopy of parametric magnons excited by a four-wave process [Phys. Rev. B75, 140405(R) (2007)]. Physical Review B, 2007, 75, .	3.2	0
129	Mode degeneracy due to vortex core removal in magnetic disks. Physical Review B, 2007, 76, .	3.2	47
130	Nonlinear phenomenological model of magnetic dissipation for large precession angles: Generalization of the Gilbert model. Physical Review B, 2007, 75, .	3.2	75
131	Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: A micromagnetic study. Physical Review B, 2007, 76, .	3.2	54
132	Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator. Physical Review B, 2007, 76, .	3.2	39
133	Microwave power generated by a spin-torque oscillator in the presence of noise. Applied Physics Letters, 2007, 91, .	3.3	67
134	Ferromagnetic resonance spectroscopy of parametric magnons excited by a four-wave process. Physical Review B, 2007, 75, .	3.2	13
135	Theory of Generation Linewidth in Spin-torque Nano-sized Auto-oscillators. Journal of Magnetics, 2007, 12, 53-58.	0.4	3
136	Theory of mutual phase locking of spin-torque nanosized oscillators. Physical Review B, 2006, 74, .	3.2	109
137	Maximum drag reduction asymptotes and the cross-over to the Newtonian plug. Journal of Fluid Mechanics, 2006, 551, 185.	3.4	32
138	Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. Journal of Applied Physics, 2006, 100, 093905.	2.5	101
139	Wave front reversal of nonreciprocal surface dipolar spin waves. Journal of Applied Physics, 2006, 99, 08P513.	2.5	17
140	Wave front reversal with frequency conversion in a nonreciprocal medium. Applied Physics Letters, 2006, 89, 252510.	3.3	9
141	Simple Analytical Model for Entire Turbulent Boundary Layer over Flat Plane. Environmental Fluid Mechanics, 2005, 5, 373-386.	1.6	8
142	Drag Reduction by Microbubbles in Turbulent Flows: The Limit of Minute Bubbles. Physical Review Letters, 2005, 94, 174502.	7.8	33
143	Polymer stress tensor in turbulent shear flows. Physical Review E, 2005, 71, 016305.	2.1	22
144	Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts. Physical Review B, 2005, 72, .	3.2	62

#	Article	IF	CITATIONS
145	Spin Wave Mode Excited by Spin-Polarized Current in a Magnetic Nanocontact is a Standing Self-Localized Wave Bullet. Physical Review Letters, 2005, 95, 237201.	7.8	227
146	Current-induced bistability and dynamic range of microwave generation in magnetic nanostructures. Physical Review B, 2005, 72, .	3.2	37
147	Saturation of turbulent drag reduction in dilute polymer solutions. Europhysics Letters, 2004, 68, 825-831.	2.0	13
148	Drag Reduction by Polymers in Wall Bounded Turbulence. Physical Review Letters, 2004, 92, 244503.	7.8	99
149	Drag reduction by a linear viscosity profile. Physical Review E, 2004, 70, 055301.	2.1	37
150	Methods of relaxation reversal for spin waves and oscillations. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 991-992.	2.3	5
151	Cooperative effect in electron transfer between metal substrate and organized organic layers. Chemical Physics Letters, 2003, 381, 650-653.	2.6	44
152	Multizone shell model for turbulent wall bounded flows. Physical Review E, 2003, 68, 046308.	2.1	2
153	Scaling exponents in anisotropic hydrodynamic turbulence. Physical Review E, 2003, 67, 026312.	2.1	24
154	Microwave signal processing using dipole-exchange spin waves. Journal of Applied Physics, 2003, 93, 8594-8596.	2.5	10
155	Effective microwave ferrite convolver using a dielectric resonator. Applied Physics Letters, 2002, 81, 1645-1647.	3.3	14
156	Formation and propagation of dipolar spin wave envelope solitons under the influence of parametric pumping. IEEE Transactions on Magnetics, 2002, 38, 3099-3101.	2.1	1
157	Active magnetostatic wave delay line for microwave signals. IEEE Transactions on Magnetics, 2002, 38, 3102-3104.	2.1	9
158	Parametric Interaction of Dipolar Spin Wave Solitons with Localized Electromagnetic Pumping. Physica Status Solidi A, 2002, 189, 1007-1014.	1.7	4
159	Nonadiabatic interaction of a propagating wave packet with localized parametric pumping. Physical Review E, 2001, 63, 066607.	2.1	35
160	Reversal of Momentum Relaxation. Physical Review Letters, 2001, 86, 4918-4921.	7.8	34
161	Nonlinear amplification and compression of envelope solitons by localized nonstationary parametric pumping. Journal of Applied Physics, 2001, 89, 6689-6691.	2.5	14
162	Wave Front Reversal of a Dipolar Spin Wave Pulse in a Nonstationary Three-Wave Parametric Interaction. Physical Review Letters, 2000, 84, 3438-3441.	7.8	41

#	Article	IF	CITATIONS
163	Parametric interaction of magnetostatic waves with a nonstationary local pump. Journal of Experimental and Theoretical Physics, 1999, 89, 1189-1199.	0.9	45
164	Parametric interaction of a spin wave pulse with localized nonstationary pumping: amplification and phase conjugation. IEEE Transactions on Magnetics, 1999, 35, 3157-3159.	2.1	8
165	Phase conjugation of linear signals and solitons of magnetostatic waves. JETP Letters, 1998, 67, 913-918.	1.4	15