
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6402675/publications.pdf Version: 2024-02-01

PICCAPDO PO

#	Article	IF	CITATIONS
1	Strategies for tuning the catalytic activity of zinc complexes in the solvent-free coupling reaction of CO2 and cyclohexene oxide. Inorganica Chimica Acta, 2022, 532, 120753.	1.2	3
2	A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-bâ€2]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. Chemistry, 2022, 4, 206-215.	0.9	2
3	Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers, 2022, 14, 1588.	2.0	5
4	Structure-properties relationships in triarylamine-based push-pull systems-C60 dyads as active material for single-material organic solar cells. Dyes and Pigments, 2021, 184, 108845.	2.0	2
5	Efficient and Stable Mesoscopic Perovskite Solar Cells Using a Dopantâ€Free D–A Copolymer Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2000801.	3.1	7
6	Allâ€Inorganic Cesiumâ€Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules. Advanced Energy Materials, 2021, 11, 2100672.	10.2	54
7	A Donor Polymer with a Good Compromise between Efficiency and Sustainability for Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100069.	2.8	15
8	Managing transparency through polymer/perovskite blending: A route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy, 2021, 89, 106406.	8.2	20
9	Anthradithiophene-based organic semiconductors through regiodirected double annulations. Journal of Materials Chemistry C, 2021, 9, 9302-9308.	2.7	15
10	Interlayers for non-fullerene based polymer solar cells: distinctive features and challenges. Energy and Environmental Science, 2021, 14, 180-223.	15.6	165
11	Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 14815-14826.	2.7	13
12	Polymerâ€Assisted Singleâ€6tep Slotâ€Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide. ChemPlusChem, 2021, 86, 1442-1450.	1.3	16
13	One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing. Cell Reports Physical Science, 2021, 2, 100639.	2.8	23
14	Micellar Suzuki Cross-Coupling between Thiophene and Aniline in Water and under Air. Organics, 2021, 2, 415-423.	0.6	1
15	Effect of Quaternary Phosphonium Salts as Cocatalysts on Epoxide/CO ₂ Copolymerization Catalyzed by salen-Type Cr(III) Complexes. Organometallics, 2020, 39, 2653-2664.	1.1	24
16	Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. International Journal of Molecular Sciences, 2020, 21, 8085.	1.8	31
17	Solutionâ€Processable Anode Double Buffer Layers for Inverted Polymer Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901023.	0.8	8
18	Flexible OPV modules for highly efficient indoor applications. Flexible and Printed Electronics, 2020, 5, 014008.	1.5	41

#	Article	IF	CITATIONS
19	One-Pot Regiodirected Annulations for the Rapid Synthesis of π-Extended Oligomers. Organic Letters, 2020, 22, 3263-3267.	2.4	25
20	Mono- and di-substituted pyrene-based donor-ï€-acceptor systems with phenyl and thienyl ï€-conjugating bridges. Dyes and Pigments, 2020, 181, 108527.	2.0	25
21	Field emission scanning electron microscopy (FESEM): an easy way to characterize morphologies of P3HT:PCBM coated and printed solar cells. Flexible and Printed Electronics, 2019, 4, 034001.	1.5	1
22	A relatively wide-bandgap and air-stable donor polymer for fabrication of efficient semitransparent and tandem organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22037-22043.	3.3	24
23	Efficient and Stable Mesoscopic Perovskite Solar Cells Using PDTITT as a New Hole Transporting Layer. Advanced Functional Materials, 2019, 29, 1905887.	7.8	29
24	Light Management in Organic Photovoltaics Processed in Ambient Conditions Using ZnO Nanowire and Antireflection Layer with Nanocone Array. Small, 2019, 15, e1900508.	5.2	31
25	Weissâ€Cook Condensations for the Synthesis of Bridged Bithiophene Monomers and Polymers. ChemistrySelect, 2019, 4, 12569-12572.	0.7	5
26	Scalable Synthesis of Naphthothiophene and Benzodithiophene Scaffolds as π-Conjugated Synthons for Organic Materials. Synthesis, 2019, 51, 677-682.	1.2	12
27	Fully Rollâ€ŧoâ€Roll Printed P3HT/Indeneâ€C60â€Bisadduct Modules with High Openâ€Circuit Voltage and Efficiency. Solar Rrl, 2018, 2, 1700160.	3.1	19
28	Atomistic modelling of entropy driven phase transitions between different crystal modifications in polymers: the case of poly(3-alkylthiophenes). Physical Chemistry Chemical Physics, 2018, 20, 28984-28989.	1.3	8
29	Effect of the Electron Transport Layer on the Interfacial Energy Barriers and Lifetime of R2R Printed Organic Solar Cell Modules. ACS Applied Energy Materials, 2018, 1, 5977-5985.	2.5	11
30	Donor–acceptor conjugated copolymers incorporating tetrafluorobenzene as the Ï€â€electron deficient unit. Journal of Polymer Science Part A, 2017, 55, 1601-1610.	2.5	20
31	Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. Journal of the American Chemical Society, 2017, 139, 8788-8791.	6.6	54
32	Origin of Charge Separation at Organic Photovoltaic Heterojunctions: A Mesoscale Quantum Mechanical View. Journal of Physical Chemistry C, 2017, 121, 16693-16701.	1.5	10
33	A family of solution-processable macrocyclic and open-chain oligothiophenes with atropoisomeric scaffolds: structural and electronic features for potential energy applications. New Journal of Chemistry, 2017, 41, 10009-10019.	1.4	15
34	Synthesis of Dithienocyclohexanones (DTCHs) as a Family of Building Blocks for π-Conjugated Compounds in Organic Electronics. ACS Omega, 2017, 2, 4347-4355.	1.6	12
35	Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules, 2017, 22, 21.	1.7	26
36	Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. Journal of Organic Chemistry, 2016, 81, 11035-11042.	1.7	48

#	Article	IF	CITATIONS
37	3,4-Ethylenedioxythiophene (EDOT) and 3,4-ethylenedithiathiophene (EDTT) as terminal blocks for oligothiophene dyes for DSSCs. Tetrahedron Letters, 2016, 57, 4815-4820.	0.7	6
38	PBDTTPD for plastic solar cells via Pd(PPh ₃) ₄ -catalyzed direct (hetero)arylation polymerization. Journal of Materials Chemistry A, 2016, 4, 17163-17170.	5.2	26
39	Beyond efficiency: scalability of molecular donor materials for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 3677-3685.	2.7	117
40	Pyrene–Fullerene Interaction and Its Effect on the Behavior of Photovoltaic Blends. Journal of Physical Chemistry C, 2016, 120, 6909-6919.	1.5	18
41	A blue dye-sensitized solar cell based on a covalently bridged oligothiophene chromophore. Tetrahedron Letters, 2016, 57, 505-508.	0.7	8
42	Gravureâ€Printed ZnO in Fully Rollâ€ŧoâ€Roll Printed Inverted Organic Solar Cells: Optimization of Adhesion and Performance. Energy Technology, 2015, 3, 407-413.	1.8	22
43	"All That Glisters Is Not Gold― An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells. Macromolecules, 2015, 48, 453-461.	2.2	268
44	Linearly π-conjugated oligothiophenes as simple metal-free sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 7756-7761.	2.7	23
45	Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems. Materials Chemistry and Physics, 2015, 159, 46-55.	2.0	21
46	R2R-printed inverted OPV modules – towards arbitrary patterned designs. Nanoscale, 2015, 7, 9570-9580.	2.8	62
47	Reactivity of decafluorobenzophenone and decafluoroazobenzene towards aromatic diamines: a practical entry to donor–acceptor systems. New Journal of Chemistry, 2015, 39, 3615-3623.	1.4	3
48	Tin-Free Synthesis of a Ternary Random Copolymer for BHJ Solar Cells: Direct (Hetero)arylation versus Stille Polymerization. Macromolecules, 2015, 48, 7039-7048.	2.2	36
49	The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses. Physical Chemistry Chemical Physics, 2015, 17, 2447-2456.	1.3	8
50	Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	8
51	Effects of Aging and Annealing on the Density of Trap States in Organic Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 7751-7758.	1.5	16
52	From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy and Environmental Science, 2014, 7, 925.	15.6	303
53	Neat C ₇₀ -Based Bulk-Heterojunction Polymer Solar Cells with Excellent Acceptor Dispersion. ACS Applied Materials & amp; Interfaces, 2014, 6, 21416-21425.	4.0	28
54	Organometallic Approaches to Conjugated Polymers for Plastic Solar Cells: From Laboratory Synthesis to Industrial Production. European Journal of Organic Chemistry, 2014, 2014, 6583-6614.	1.2	63

#	Article	IF	CITATIONS
55	Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 18375-18382.	5.2	26
56	Hyperspectral imaging of polymer/fullerene blends. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	3
57	Tuning of the Photovoltaic Parameters of Molecular Donors by Covalent Bridging. Advanced Functional Materials, 2013, 23, 4854-4861.	7.8	20
58	Double acceptor D–A copolymers containing benzotriazole and benzothiadiazole units: chemical tailoring towards efficient photovoltaic properties. Journal of Materials Chemistry A, 2013, 1, 10736.	5.2	25
59	Toward a Realistic Modeling of the Photophysics of Molecular Building Blocks for Energy Harvesting: The Charge-Transfer State in 4,7-Dithien-2-yl-2,1,3-benzothiadiazole As a Case Study. Journal of Physical Chemistry C, 2013, 117, 13785-13797.	1.5	13
60	Intramolecular CH/Ï€ interactions in alkylaromatics: Monomer conformations for poly(3â€alkylthiophene) atomistic models. International Journal of Quantum Chemistry, 2013, 113, 2154-2162.	1.0	31
61	Time-Resolved EPR of Photoinduced Excited States in a Semiconducting Polymer/PCBM Blend. Journal of Physical Chemistry C, 2013, 117, 1554-1560.	1.5	36
62	Solvent-free phenyl-C61-butyric acid methyl ester (PCBM) from clathrates: insights for organic photovoltaics from crystal structures and molecular dynamics. Chemical Communications, 2013, 49, 4525.	2.2	47
63	Pushing the Envelope of the Intrinsic Limitation of Organic Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1821-1828.	2.1	61
64	Thermal and environmental effects on Oligothiophene low-energy singlet electronic excitations in dilute solution: a theoretical and experimental study. Highlights in Theoretical Chemistry, 2013, , 185-198.	0.0	0
65	Materials for organic photovoltaics: insights from detailed structural models and molecular simulations. EPJ Web of Conferences, 2012, 33, 02002.	0.1	9
66	Cathode buffer layers based on vacuum and solution deposited poly(3,4-ethylenedioxythiophene) for efficient inverted organic solar cells. Applied Physics Letters, 2012, 100, .	1.5	25
67	A Solid State Density Functional Study of Crystalline Thiophene-Based Oligomers and Polymers. Journal of Physical Chemistry B, 2012, 116, 14504-14509.	1.2	27
68	Thermal and environmental effects on Oligothiophene low-energy singlet electronic excitations in dilute solution: a theoretical and experimental study. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	7
69	Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics. Dyes and Pigments, 2012, 95, 126-133.	2.0	88
70	Comparison between theoretical and experimental electronic properties of some popular donor polymers for bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 139-149.	3.0	18
71	Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Solar Energy Materials and Solar Cells, 2012, 100, 97-114.	3.0	128
72	Effect of residual catalyst on solar cells made of a fluorene-thiophene-benzothiadiazole copolymer as electron-donor: A combined electrical and photophysical study. Organic Electronics, 2012, 13, 550-559.	1.4	43

#	Article	IF	CITATIONS
73	Design, Synthesis, Characterization and Use of Random Conjugated Copolymers for Optoelectronic Applications. International Federation for Information Processing, 2011, , 596-603.	0.4	0
74	Effect of blend composition in BisEH-PFDTBT:PC70BM solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3428-3432.	3.0	4
75	Density of trap states in organic photovoltaic materials from LESR studies of carrier recombination kinetics. Physical Review B, 2011, 84, .	1.1	15
76	Bis-EH-PFDTBT:PCBM solar cells: A compositional, thickness, and light-dependent study. Journal of Applied Physics, 2011, 110, 113106.	1.1	7
77	The role of buffer layers in polymer solar cells. Energy and Environmental Science, 2011, 4, 285-310.	15.6	455
78	Optical and electronic properties of fluorene/thiophene/benzothiadiazole pseudorandom copolymers for photovoltaic applications. Journal of Materials Science, 2011, 46, 3960-3968.	1.7	16
79	Manipulation of the Open-Circuit Voltage of Organic Solar Cells by Desymmetrization of the Structure of Acceptor-Donor-Acceptor Molecules. Advanced Functional Materials, 2011, 21, 4379-4387.	7.8	98
80	Ternary thiophene–X–thiophene semiconductor building blocks (X=fluorene, carbazole,) Tj ETQq0 0 0 rgB core. Electrochimica Acta, 2011, 56, 6638-6653.	Г /Overlock 2.6	10 Tf 50 467 28
81	Polymer Solar Cells: Recent Approaches and Achievements. Journal of Physical Chemistry C, 2010, 114, 695-706.	1.5	234
82	Molecular Modeling of Crystalline Alkylthiophene Oligomers and Polymers. Journal of Physical Chemistry B, 2010, 114, 1591-1602.	1.2	87
83	One-pot synthesis of isotactic-capped syndiotactic polystyrene with a bimetallic homogeneous catalytic system. Polymer Journal, 2010, 42, 416-418.	1.3	3
84	Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: The treatment of electrostatic interactions. Journal of Chemical Physics, 2010, 132, 094705.	1.2	74
85	Oxazoline-Containing Phosphazene Derivatives, Part III: Synthesis and Characterization of Novel Cyclophosphazenes Functionalized With Chiral 2-Oxazoline Groups. Designed Monomers and Polymers, 2008, 11, 243-260.	0.7	9
86	Oxazoline-Containing Phosphazene Derivatives Part II Polymer Preparation and Modification Through the Reactivity of Oxazoline Moieties on Cyclophosphazenes. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 387-398.	1.9	4
87	Linear low-density polyethylenes by co-polymerization of ethylene with 1-hexene in the presence of titanium precursors and organoaluminium co-catalysts. Polymer, 2007, 48, 1185-1192.	1.8	17
88	Methylaluminoxane: only a cocatalyst or something more?. Polymer Bulletin, 2006, 56, 101-109.	1.7	11
89	Controlled Free-Radical Polymerization: New Breath in a Mature Technology. Polymer News, 2005, 30, 110-119.	0.1	1
90	Quantitative Correlation between Steric Defects and Thermal Behavior in Highly Syndiotactic Polystyrene: A Study Based on DSC and 13C NMR Spectroscopy. Macromolecular Chemistry and Physics, 2003, 204, 1428-1438.	1.1	7

#	Article	IF	CITATIONS
91	Cyclophosphazenes as polymer modifiers. Macromolecular Symposia, 2003, 196, 249-270.	0.4	18
92	Hexakis(4-Oxazolinophenoxy) Cyclophosphazene as a Novel Compatibilizer for Polycarbonates and Polyamides. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 263-266.	0.8	1
93	Oxazoline-containing phosphazene derivatives. Part I: the case of hexakis(4-oxazolinophenoxy)cyclophosphazene. Designed Monomers and Polymers, 2001, 4, 219-238.	0.7	12
94	Reactive Cyclophosphazenes Containing Oxazoline Groups: the Case of Hexakis(4-Oxazolinophenoxy)Cyclophosphazene. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 168, 269-274.	0.8	2
95	Molding of syndiotactic polystyrene under its melting temperature. Journal of Applied Polymer Science, 2001, 80, 377-383.	1.3	1
96	A Comparison of the Behavior of Nickel/MAO Catalytic Systems in the Polymerization of Styrene and 1,3-Cyclohexadiene. , 2001, , 365-374.		0
97	Syndiotactic polystyrene/high-density polyethylene blends compatibilized with SEBS copolymer: thermal, morphological, tensile, dynamic-mechanical, and ultrasonic characterization. Macromolecular Chemistry and Physics, 2000, 201, 1732-1741.	1.1	23
98	Polymerization of 1,3-cyclohexadiene with nickel/MAO catalytic systems. Journal of Polymer Science Part A, 2000, 38, 3004-3009.	2.5	13
99	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 61-72.	1.5	2
100	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 23-38.	1.5	1
101	Syndiospecific polymerization of styrene: Activity enhancement of Ti/MAO catalytic systems in the presence of SnR4 compounds. Journal of Polymer Science Part A, 1999, 37, 1053-1056.	2.5	5
102	Poly(Organophosphazenes) Containing Oxazoline Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 201-204.	0.8	3
103	CYCLO E POLY(ORGANOPHOSPHAZENES) FUNCTIONALIZED WITH OXAZOLINE GROUPS. SYNTHESIS AND EXPLOITATION. Phosphorus Research Bulletin, 1999, 10, 730-735.	0.1	4
104	Some surface properties of syndiotactic polystyrene. Applied Surface Science, 1998, 125, 287-292.	3.1	12
105	Investigation on the dynamics of aromatic polyesters by means of high resolution solid state CPMAS13C NMR. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1557-1566.	2.4	17
106	Polymerization of styrene with nickel complex/methylaluminoxane catalytic systems. Journal of Polymer Science Part A, 1998, 36, 2119-2126.	2.5	31
107	Functionalization of poly(organophosphazenes), 10. Thermally induced grafting reactions of maleates containing oxazoline groups onto aryloxy-substituted poly(organophosphazenes). Macromolecular Chemistry and Physics, 1998, 199, 2477-2487.	1.1	12
108	Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules. Journal of Applied Polymer Science, 1998, 69, 2423-2433.	1.3	25

#	Article	IF	CITATIONS
109	Effect of aluminium alkyls on the synthesis of syndiotactic polystyrene with titanium complexes/methylaluminoxane catalytic systems. Polymer, 1998, 39, 959-964.	1.8	41
110	Kinetic and catalytic aspects of dimethylterephtalate transesterification also through the use of model molecules. Journal of Molecular Catalysis A, 1998, 130, 233-240.	4.8	8
111	Copolymerization of bis(2-oxazoline)s, anhydrides, and diols or diamines. Reaction mechanisms and polymer properties. Journal of Polymer Science Part A, 1997, 35, 3241-3248.	2.5	8
112	Synthesis and characterization of syndiotactic polystyrene and poly[styreneâ€coâ€(pâ€methylstyrene)]. Macromolecular Symposia, 1996, 102, 123-130.	0.4	7
113	Synthesis of syndiotactic polystyrene: Reaction mechanisms and catalysis. Progress in Polymer Science, 1996, 21, 47-88.	11.8	168
114	New Polymeric Materials for Containers Manufacture Based on PET/PEN Copolyesters and Blends. Polymers for Advanced Technologies, 1996, 7, 365-373.	1.6	35
115	13C and 1H nuclear magnetic resonance relaxation of poly(ethylene terephthalate), poly(ethylene) Tj ETQq1 1 0.	.784314 rş 1.8	gBT_{Overloci
116	Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate). Angewandte Makromolekulare Chemie, 1995, 225, 109-122.	0.3	21
117	Synthesis and characterization of thermoplastic copolyesters containing copolymerized azoic dyes. Polymers for Advanced Technologies, 1995, 6, 63-68.	1.6	1
118	Magic angle carbon-13 NMR study of solid poly(ethylene naphthalene-2,6-dicarboxylate). Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 691-697.	2.4	16
119	Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media. Optical Materials, 1995, 4, 467-475.	1.7	29
120	New azo-dye-doped polymer systems as dynamic holographic recording media. Applied Physics A: Materials Science and Processing, 1995, 60, 239-242.	1.1	32
121	Synthesis and Characterization of Poly(ester-amide)s from Bis(2-oxazoline)s, Anhydrides, and Diols. Macromolecules, 1995, 28, 5699-5705.	2.2	21
122	New azo-dye-doped polymer systems as dynamic holographic recording media. Applied Physics A: Materials Science and Processing, 1995, 60, 239-242.	1.1	1
123	Processing effects on poly(ethylene terephthalate) from bottle scraps. Polymer Engineering and Science, 1994, 34, 1219-1223.	1.5	36
124	Synthesis and 13C NMR characterization of ethylene glycol/terephthalic acid/hydroxybenzoic acid copolyesters. Macromolecular Chemistry and Physics, 1994, 195, 181-193.	1.1	1
125	Water-Absorbent Polymers: A Patent Survey. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1994, 34, 607-662.	2.2	160
126	Chain extension of recycled poly(ethylene terephthalate) with 2,2′-Bis(2-oxazoline). Journal of Applied Polymer Science, 1993, 50, 1501-1509.	1.3	96

#	Article	IF	CITATIONS
127	Conformational analysis of some aromatic copolyesters in solution by means of 1Hî—,1H nuclear Overhauser effect experiments. Polymer, 1993, 34, 3380-3386.	1.8	10
128	Application of liquid chromatography—thermospray mass spectrometry to the analysis of polyester oligomers. Journal of Chromatography A, 1993, 647, 311-318.	1.8	6
129	Fractionation of linear saturated (co)polyesters by differential precipitation. Polymer Bulletin, 1993, 30, 551-557.	1.7	5
130	Computer simulation of non-equilibrium step-growth copolymerization processes. European Polymer Journal, 1992, 28, 79-84.	2.6	4
131	1H NMR investigation of some aromatic copolyester. Die Makromolekulare Chemie, 1992, 193, 1859-1866.	1.1	12
132	Chiral Liquid-Crystalline Polymers. IX. The Effect of Chiral Spacer Structure in Thermotropic Polyesters. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 179, 405-418.	0.3	9
133	Chiral liquid-crystalline polymers. Polymer Bulletin, 1990, 23, 397-402.	1.7	9