Riccardo Po

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6402675/publications.pdf

Version: 2024-02-01

159585 118850 4,472 133 30 62 citations h-index g-index papers 138 138 138 5425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of buffer layers in polymer solar cells. Energy and Environmental Science, 2011, 4, 285-310.	30.8	455
2	From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy and Environmental Science, 2014, 7, 925.	30.8	303
3	"All That Clisters Is Not Gold― An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells. Macromolecules, 2015, 48, 453-461.	4.8	268
4	Polymer Solar Cells: Recent Approaches and Achievements. Journal of Physical Chemistry C, 2010, 114, 695-706.	3.1	234
5	Synthesis of syndiotactic polystyrene: Reaction mechanisms and catalysis. Progress in Polymer Science, 1996, 21, 47-88.	24.7	168
6	Interlayers for non-fullerene based polymer solar cells: distinctive features and challenges. Energy and Environmental Science, 2021, 14, 180-223.	30.8	165
7	Water-Absorbent Polymers: A Patent Survey. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1994, 34, 607-662.	2.2	160
8	Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Solar Energy Materials and Solar Cells, 2012, 100, 97-114.	6.2	128
9	Beyond efficiency: scalability of molecular donor materials for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 3677-3685.	5.5	117
10	Manipulation of the Open-Circuit Voltage of Organic Solar Cells by Desymmetrization of the Structure of Acceptor-Donor-Acceptor Molecules. Advanced Functional Materials, 2011, 21, 4379-4387.	14.9	98
11	Chain extension of recycled poly(ethylene terephthalate) with 2,2′-Bis(2-oxazoline). Journal of Applied Polymer Science, 1993, 50, 1501-1509.	2.6	96
12	Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics. Dyes and Pigments, 2012, 95, 126-133.	3.7	88
13	Molecular Modeling of Crystalline Alkylthiophene Oligomers and Polymers. Journal of Physical Chemistry B, 2010, 114, 1591-1602.	2.6	87
14	Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: The treatment of electrostatic interactions. Journal of Chemical Physics, 2010, 132, 094705.	3.0	74
15	Organometallic Approaches to Conjugated Polymers for Plastic Solar Cells: From Laboratory Synthesis to Industrial Production. European Journal of Organic Chemistry, 2014, 2014, 6583-6614.	2.4	63
16	R2R-printed inverted OPV modules – towards arbitrary patterned designs. Nanoscale, 2015, 7, 9570-9580.	5.6	62
17	Pushing the Envelope of the Intrinsic Limitation of Organic Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1821-1828.	4.6	61
18	Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. Journal of the American Chemical Society, 2017, 139, 8788-8791.	13.7	54

#	Article	IF	CITATIONS
19	Allâ€Inorganic Cesiumâ€Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules. Advanced Energy Materials, 2021, 11, 2100672.	19.5	54
20	Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. Journal of Organic Chemistry, 2016, 81, 11035-11042.	3.2	48
21	Solvent-free phenyl-C61-butyric acid methyl ester (PCBM) from clathrates: insights for organic photovoltaics from crystal structures and molecular dynamics. Chemical Communications, 2013, 49, 4525.	4.1	47
22	Effect of residual catalyst on solar cells made of a fluorene-thiophene-benzothiadiazole copolymer as electron-donor: A combined electrical and photophysical study. Organic Electronics, 2012, 13, 550-559.	2.6	43
23	Effect of aluminium alkyls on the synthesis of syndiotactic polystyrene with titanium complexes/methylaluminoxane catalytic systems. Polymer, 1998, 39, 959-964.	3.8	41
24	Flexible OPV modules for highly efficient indoor applications. Flexible and Printed Electronics, 2020, 5, 014008.	2.7	41
25	Processing effects on poly(ethylene terephthalate) from bottle scraps. Polymer Engineering and Science, 1994, 34, 1219-1223.	3.1	36
26	Time-Resolved EPR of Photoinduced Excited States in a Semiconducting Polymer/PCBM Blend. Journal of Physical Chemistry C, 2013, 117, 1554-1560.	3.1	36
27	Tin-Free Synthesis of a Ternary Random Copolymer for BHJ Solar Cells: Direct (Hetero)arylation versus Stille Polymerization. Macromolecules, 2015, 48, 7039-7048.	4.8	36
28	New Polymeric Materials for Containers Manufacture Based on PET/PEN Copolyesters and Blends. Polymers for Advanced Technologies, 1996, 7, 365-373.	3.2	35
29	New azo-dye-doped polymer systems as dynamic holographic recording media. Applied Physics A: Materials Science and Processing, 1995, 60, 239-242.	2.3	32
30	Polymerization of styrene with nickel complex/methylaluminoxane catalytic systems. Journal of Polymer Science Part A, 1998, 36, 2119-2126.	2.3	31
31	Intramolecular CH/Ï€ interactions in alkylaromatics: Monomer conformations for poly(3â€alkylthiophene) atomistic models. International Journal of Quantum Chemistry, 2013, 113, 2154-2162.	2.0	31
32	Light Management in Organic Photovoltaics Processed in Ambient Conditions Using ZnO Nanowire and Antireflection Layer with Nanocone Array. Small, 2019, 15, e1900508.	10.0	31
33	Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. International Journal of Molecular Sciences, 2020, 21, 8085.	4.1	31
34	Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media. Optical Materials, 1995, 4, 467-475.	3.6	29
35	Efficient and Stable Mesoscopic Perovskite Solar Cells Using PDTITT as a New Hole Transporting Layer. Advanced Functional Materials, 2019, 29, 1905887.	14.9	29
36	Ternary thiophene–X–thiophene semiconductor building blocks (X=fluorene, carbazole,) Tj ETQq0 0 0 rgBT core. Electrochimica Acta, 2011, 56, 6638-6653.	Overlock 5.2	10 Tf 50 67 To 28

core. Electrochimica Acta, 2011, 56, 6638-6653.

#	Article	IF	Citations
37	Neat C ₇₀ -Based Bulk-Heterojunction Polymer Solar Cells with Excellent Acceptor Dispersion. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21416-21425.	8.0	28
38	A Solid State Density Functional Study of Crystalline Thiophene-Based Oligomers and Polymers. Journal of Physical Chemistry B, 2012, 116, 14504-14509.	2.6	27
39	Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 18375-18382.	10.3	26
40	PBDTTPD for plastic solar cells via Pd(PPh ₃) ₄ -catalyzed direct (hetero)arylation polymerization. Journal of Materials Chemistry A, 2016, 4, 17163-17170.	10.3	26
41	Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules, 2017, 22, 21.	3.8	26
42	Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules. Journal of Applied Polymer Science, 1998, 69, 2423-2433.	2.6	25
43	Cathode buffer layers based on vacuum and solution deposited poly(3,4-ethylenedioxythiophene) for efficient inverted organic solar cells. Applied Physics Letters, 2012, 100, .	3.3	25
44	Double acceptor D–A copolymers containing benzotriazole and benzothiadiazole units: chemical tailoring towards efficient photovoltaic properties. Journal of Materials Chemistry A, 2013, 1, 10736.	10.3	25
45	One-Pot Regiodirected Annulations for the Rapid Synthesis of π-Extended Oligomers. Organic Letters, 2020, 22, 3263-3267.	4.6	25
46	Mono- and di-substituted pyrene-based donor-π-acceptor systems with phenyl and thienyl π-conjugating bridges. Dyes and Pigments, 2020, 181, 108527.	3.7	25
47	A relatively wide-bandgap and air-stable donor polymer for fabrication of efficient semitransparent and tandem organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22037-22043.	7.1	24
48	Effect of Quaternary Phosphonium Salts as Cocatalysts on Epoxide/CO ₂ Copolymerization Catalyzed by salen-Type Cr(III) Complexes. Organometallics, 2020, 39, 2653-2664.	2.3	24
49	Syndiotactic polystyrene/high-density polyethylene blends compatibilized with SEBS copolymer: thermal, morphological, tensile, dynamic-mechanical, and ultrasonic characterization. Macromolecular Chemistry and Physics, 2000, 201, 1732-1741.	2.2	23
50	Linearly π-conjugated oligothiophenes as simple metal-free sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 7756-7761.	5.5	23
51	One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing. Cell Reports Physical Science, 2021, 2, 100639.	5.6	23
52	Gravureâ€Printed ZnO in Fully Rollâ€ŧoâ€Roll Printed Inverted Organic Solar Cells: Optimization of Adhesion and Performance. Energy Technology, 2015, 3, 407-413.	3.8	22
53	Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate). Angewandte Makromolekulare Chemie, 1995, 225, 109-122.	0.2	21
54	Synthesis and Characterization of Poly(ester-amide)s from Bis(2-oxazoline)s, Anhydrides, and Diols. Macromolecules, 1995, 28, 5699-5705.	4.8	21

#	Article	IF	CITATIONS
55	Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems. Materials Chemistry and Physics, 2015, 159, 46-55.	4.0	21
56	Tuning of the Photovoltaic Parameters of Molecular Donors by Covalent Bridging. Advanced Functional Materials, 2013, 23, 4854-4861.	14.9	20
57	Donor–acceptor conjugated copolymers incorporating tetrafluorobenzene as the Ï€â€electron deficient unit. Journal of Polymer Science Part A, 2017, 55, 1601-1610.	2.3	20
58	Managing transparency through polymer/perovskite blending: A route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy, 2021, 89, 106406.	16.0	20
59	Fully Rollâ€ŧoâ€Roll Printed P3HT/Indeneâ€C60â€Bisadduct Modules with High Openâ€Circuit Voltage and Efficiency. Solar Rrl, 2018, 2, 1700160.	5.8	19
60	13C and 1H nuclear magnetic resonance relaxation of poly(ethylene terephthalate), poly(ethylene) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
61	Cyclophosphazenes as polymer modifiers. Macromolecular Symposia, 2003, 196, 249-270.	0.7	18
62	Comparison between theoretical and experimental electronic properties of some popular donor polymers for bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 139-149.	6.2	18
63	Pyrene–Fullerene Interaction and Its Effect on the Behavior of Photovoltaic Blends. Journal of Physical Chemistry C, 2016, 120, 6909-6919.	3.1	18
64	Investigation on the dynamics of aromatic polyesters by means of high resolution solid state CPMAS13C NMR. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1557-1566.	2.1	17
65	Linear low-density polyethylenes by co-polymerization of ethylene with 1-hexene in the presence of titanium precursors and organoaluminium co-catalysts. Polymer, 2007, 48, 1185-1192.	3.8	17
66	Magic angle carbon-13 NMR study of solid poly(ethylene naphthalene-2,6-dicarboxylate). Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 691-697.	2.1	16
67	Optical and electronic properties of fluorene/thiophene/benzothiadiazole pseudorandom copolymers for photovoltaic applications. Journal of Materials Science, 2011, 46, 3960-3968.	3.7	16
68	Effects of Aging and Annealing on the Density of Trap States in Organic Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 7751-7758.	3.1	16
69	Polymerâ€Assisted Singleâ€Step Slotâ€Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide. ChemPlusChem, 2021, 86, 1442-1450.	2.8	16
70	Density of trap states in organic photovoltaic materials from LESR studies of carrier recombination kinetics. Physical Review B, 2011, 84, .	3.2	15
71	A family of solution-processable macrocyclic and open-chain oligothiophenes with atropoisomeric scaffolds: structural and electronic features for potential energy applications. New Journal of Chemistry, 2017, 41, 10009-10019.	2.8	15
72	A Donor Polymer with a Good Compromise between Efficiency and Sustainability for Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100069.	5.8	15

#	Article	IF	Citations
73	Anthradithiophene-based organic semiconductors through regiodirected double annulations. Journal of Materials Chemistry C, 2021, 9, 9302-9308.	5.5	15
74	Polymerization of 1,3-cyclohexadiene with nickel/MAO catalytic systems. Journal of Polymer Science Part A, 2000, 38, 3004-3009.	2.3	13
75	Toward a Realistic Modeling of the Photophysics of Molecular Building Blocks for Energy Harvesting: The Charge-Transfer State in 4,7-Dithien-2-yl-2,1,3-benzothiadiazole As a Case Study. Journal of Physical Chemistry C, 2013, 117, 13785-13797.	3.1	13
76	Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 14815-14826.	5.5	13
77	1H NMR investigation of some aromatic copolyester. Die Makromolekulare Chemie, 1992, 193, 1859-1866.	1.1	12
78	Some surface properties of syndiotactic polystyrene. Applied Surface Science, 1998, 125, 287-292.	6.1	12
79	Functionalization of poly(organophosphazenes), 10. Thermally induced grafting reactions of maleates containing oxazoline groups onto aryloxy-substituted poly(organophosphazenes). Macromolecular Chemistry and Physics, 1998, 199, 2477-2487.	2.2	12
80	Oxazoline-containing phosphazene derivatives. Part I: the case of hexakis(4-oxazolinophenoxy)cyclophosphazene. Designed Monomers and Polymers, 2001, 4, 219-238.	1.6	12
81	Synthesis of Dithienocyclohexanones (DTCHs) as a Family of Building Blocks for π-Conjugated Compounds in Organic Electronics. ACS Omega, 2017, 2, 4347-4355.	3.5	12
82	Scalable Synthesis of Naphthothiophene and Benzodithiophene Scaffolds as π-Conjugated Synthons for Organic Materials. Synthesis, 2019, 51, 677-682.	2.3	12
83	Methylaluminoxane: only a cocatalyst or something more?. Polymer Bulletin, 2006, 56, 101-109.	3.3	11
84	Effect of the Electron Transport Layer on the Interfacial Energy Barriers and Lifetime of R2R Printed Organic Solar Cell Modules. ACS Applied Energy Materials, 2018, 1, 5977-5985.	5.1	11
85	Conformational analysis of some aromatic copolyesters in solution by means of 1Hî—,1H nuclear Overhauser effect experiments. Polymer, 1993, 34, 3380-3386.	3.8	10
86	Origin of Charge Separation at Organic Photovoltaic Heterojunctions: A Mesoscale Quantum Mechanical View. Journal of Physical Chemistry C, 2017, 121, 16693-16701.	3.1	10
87	Chiral Liquid-Crystalline Polymers. IX. The Effect of Chiral Spacer Structure in Thermotropic Polyesters. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 179, 405-418.	0.3	9
88	Chiral liquid-crystalline polymers. Polymer Bulletin, 1990, 23, 397-402.	3.3	9
89	Oxazoline-Containing Phosphazene Derivatives, Part III: Synthesis and Characterization of Novel Cyclophosphazenes Functionalized With Chiral 2-Oxazoline Groups. Designed Monomers and Polymers, 2008, 11, 243-260.	1.6	9
90	Materials for organic photovoltaics: insights from detailed structural models and molecular simulations. EPJ Web of Conferences, 2012, 33, 02002.	0.3	9

#	Article	IF	Citations
91	Copolymerization of bis(2-oxazoline)s, anhydrides, and diols or diamines. Reaction mechanisms and polymer properties. Journal of Polymer Science Part A, 1997, 35, 3241-3248.	2.3	8
92	Kinetic and catalytic aspects of dimethylterephtalate transesterification also through the use of model molecules. Journal of Molecular Catalysis A, 1998, 130, 233-240.	4.8	8
93	Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-10.	2.5	8
94	The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses. Physical Chemistry Chemical Physics, 2015, 17, 2447-2456.	2.8	8
95	A blue dye-sensitized solar cell based on a covalently bridged oligothiophene chromophore. Tetrahedron Letters, 2016, 57, 505-508.	1.4	8
96	Atomistic modelling of entropy driven phase transitions between different crystal modifications in polymers: the case of poly(3-alkylthiophenes). Physical Chemistry Chemical Physics, 2018, 20, 28984-28989.	2.8	8
97	Solutionâ€Processable Anode Double Buffer Layers for Inverted Polymer Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901023.	1.8	8
98	Synthesis and characterization of syndiotactic polystyrene and poly[styreneâ€coâ€(pâ€methylstyrene)]. Macromolecular Symposia, 1996, 102, 123-130.	0.7	7
99	Quantitative Correlation between Steric Defects and Thermal Behavior in Highly Syndiotactic Polystyrene: A Study Based on DSC and 13C NMR Spectroscopy. Macromolecular Chemistry and Physics, 2003, 204, 1428-1438.	2.2	7
100	Bis-EH-PFDTBT:PCBM solar cells: A compositional, thickness, and light-dependent study. Journal of Applied Physics, 2011, 110, 113106.	2.5	7
101	Thermal and environmental effects on Oligothiophene low-energy singlet electronic excitations in dilute solution: a theoretical and experimental study. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	7
102	Efficient and Stable Mesoscopic Perovskite Solar Cells Using a Dopantâ€Free D–A Copolymer Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2000801.	5.8	7
103	Application of liquid chromatographyâ€"thermospray mass spectrometry to the analysis of polyester oligomers. Journal of Chromatography A, 1993, 647, 311-318.	3.7	6
104	3,4-Ethylenedioxythiophene (EDOT) and 3,4-ethylenedithiathiophene (EDTT) as terminal blocks for oligothiophene dyes for DSSCs. Tetrahedron Letters, 2016, 57, 4815-4820.	1.4	6
105	Fractionation of linear saturated (co)polyesters by differential precipitation. Polymer Bulletin, 1993, 30, 551-557.	3.3	5
106	Syndiospecific polymerization of styrene: Activity enhancement of Ti/MAO catalytic systems in the presence of SnR4 compounds. Journal of Polymer Science Part A, 1999, 37, 1053-1056.	2.3	5
107	Weissâ€Cook Condensations for the Synthesis of Bridged Bithiophene Monomers and Polymers. ChemistrySelect, 2019, 4, 12569-12572.	1.5	5
108	Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers, 2022, 14, 1588.	4.5	5

#	Article	IF	CITATIONS
109	Computer simulation of non-equilibrium step-growth copolymerization processes. European Polymer Journal, 1992, 28, 79-84.	5.4	4
110	CYCLO E POLY(ORGANOPHOSPHAZENES) FUNCTIONALIZED WITH OXAZOLINE GROUPS. SYNTHESIS AND EXPLOITATION. Phosphorus Research Bulletin, 1999, 10, 730-735.	0.6	4
111	Oxazoline-Containing Phosphazene Derivatives Part II Polymer Preparation and Modification Through the Reactivity of Oxazoline Moieties on Cyclophosphazenes. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 387-398.	3.7	4
112	Effect of blend composition in BisEH-PFDTBT:PC70BM solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3428-3432.	6.2	4
113	Poly(Organophosphazenes) Containing Oxazoline Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 201-204.	1.6	3
114	One-pot synthesis of isotactic-capped syndiotactic polystyrene with a bimetallic homogeneous catalytic system. Polymer Journal, 2010, 42, 416-418.	2.7	3
115	Reactivity of decafluorobenzophenone and decafluoroazobenzene towards aromatic diamines: a practical entry to donor–acceptor systems. New Journal of Chemistry, 2015, 39, 3615-3623.	2.8	3
116	Hyperspectral imaging of polymer/fullerene blends. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	3
117	Strategies for tuning the catalytic activity of zinc complexes in the solvent-free coupling reaction of CO2 and cyclohexene oxide. Inorganica Chimica Acta, 2022, 532, 120753.	2.4	3
118	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 61-72.	1.5	2
119	Reactive Cyclophosphazenes Containing Oxazoline Groups: the Case of Hexakis(4-Oxazolinophenoxy)Cyclophosphazene. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 168, 269-274.	1.6	2
120	Structure-properties relationships in triarylamine-based push-pull systems-C60 dyads as active material for single-material organic solar cells. Dyes and Pigments, 2021, 184, 108845.	3.7	2
121	A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. Chemistry, 2022, 4, 206-215.	2.2	2
122	Synthesis and 13C NMR characterization of ethylene glycol/terephthalic acid/hydroxybenzoic acid copolyesters. Macromolecular Chemistry and Physics, 1994, 195, 181-193.	2.2	1
123	Synthesis and characterization of thermoplastic copolyesters containing copolymerized azoic dyes. Polymers for Advanced Technologies, 1995, 6, 63-68.	3.2	1
124	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 23-38.	1.5	1
125	Hexakis(4-Oxazolinophenoxy) Cyclophosphazene as a Novel Compatibilizer for Polycarbonates and Polyamides. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 263-266.	1.6	1
126	Molding of syndiotactic polystyrene under its melting temperature. Journal of Applied Polymer Science, 2001, 80, 377-383.	2.6	1

#	Article	lF	CITATIONS
127	Field emission scanning electron microscopy (FESEM): an easy way to characterize morphologies of P3HT:PCBM coated and printed solar cells. Flexible and Printed Electronics, 2019, 4, 034001.	2.7	1
128	Controlled Free-Radical Polymerization: New Breath in a Mature Technology. Polymer News, 2005, 30, 110-119.	0.1	1
129	New azo-dye-doped polymer systems as dynamic holographic recording media. Applied Physics A: Materials Science and Processing, 1995, 60, 239-242.	2.3	1
130	Micellar Suzuki Cross-Coupling between Thiophene and Aniline in Water and under Air. Organics, 2021, 2, 415-423.	1.3	1
131	Design, Synthesis, Characterization and Use of Random Conjugated Copolymers for Optoelectronic Applications. International Federation for Information Processing, 2011, , 596-603.	0.4	O
132	A Comparison of the Behavior of Nickel/MAO Catalytic Systems in the Polymerization of Styrene and 1,3-Cyclohexadiene., 2001,, 365-374.		0
133	Thermal and environmental effects on Oligothiophene low-energy singlet electronic excitations in dilute solution: a theoretical and experimental study. Highlights in Theoretical Chemistry, 2013, , 185-198.	0.0	0