Frank Follmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6402479/publications.pdf

Version: 2024-02-01

40 papers 2,222 citations

279778
23
h-index

289230 40 g-index

41 all docs

41 docs citations

41 times ranked

2587 citing authors

#	Article	IF	CITATIONS
1	Comparison of Tuberculin Skin Test and New Specific Blood Test in Tuberculosis Contacts. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 65-69.	5.6	297
2	Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements. PLoS ONE, 2008, 3, e3116.	2.5	262
3	Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Scientific Reports, 2016, 6, 19570.	3.3	205
4	Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2019, 19, 1091-1100.	9.1	120
5	PPE Protein (Rv3873) from DNA Segment RD1 of <i>Mycobacterium tuberculosis </i> Strong Recognition of Both Specific T-Cell Epitopes and Epitopes Conserved within the PPE Family. Infection and Immunity, 2003, 71, 6116-6123.	2.2	109
6	Protection Against <i>Chlamydia trachomatis </i> Infection and Upper Genital Tract Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein. Journal of Infectious Diseases, 2015, 212, 978-989.	4.0	99
7	Decoration of Outer Membrane Vesicles with Multiple Antigens by Using an Autotransporter Approach. Applied and Environmental Microbiology, 2014, 80, 5854-5865.	3.1	95
8	A Plasmodium falciparum GLURP–MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine, 2004, 22, 1188-1198.	3.8	82
9	Liposome Delivery of <i>Chlamydia muridarum </i> Major Outer Membrane Protein Primes a Th1 Response That Protects against Genital Chlamydial Infection in a Mouse Model1. Journal of Infectious Diseases, 2008, 198, 758-767.	4.0	78
10	Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach. Journal of Controlled Release, 2015, 210, 48-57.	9.9	76
11	A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Veterinary Research, 2015, 46, 116.	3.0	65
12	Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Frontiers in Immunology, 2015, 6, 628.	4.8	58
13	Protection against Chlamydia Promoted by a Subunit Vaccine (CTH1) Compared with a Primary Intranasal Infection in a Mouse Genital Challenge Model. PLoS ONE, 2010, 5, e10768.	2.5	54
14	A multiâ€subunit <i>Chlamydia</i> vaccine inducing neutralizing antibodies and strong IFNâ€i³ ⁺ CMI responses protects against a genital infection in minipigs. Immunology and Cell Biology, 2016, 94, 185-195.	2.3	48
15	A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. Journal of Controlled Release, 2018, 271, 88-97.	9.9	48
16	Simultaneous Subcutaneous and Intranasal Administration of a CAFO1-Adjuvanted Chlamydia Vaccine Elicits Elevated IgA and Protective Th1/Th17 Responses in the Genital Tract. Frontiers in Immunology, 2017, 8, 569.	4.8	42
17	Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Immunology, 2009, 183, 2294-2302.	0.8	39
18	An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microbial Cell Factories, 2014, 13, 162.	4.0	38

#	Article	IF	CITATIONS
19	Antigenic Profiling of a <i>Chlamydia trachomatis</i> Geneâ€Expression Library. Journal of Infectious Diseases, 2008, 197, 897-905.	4.0	36
20	Quantitative Protein Profiling of Chlamydia trachomatis Growth Forms Reveals Defense Strategies Against Tryptophan Starvation. Molecular and Cellular Proteomics, 2016, 15, 3540-3550.	3.8	34
21	Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis. Frontiers in Immunology, 2017, 8, 1652.	4.8	30
22	Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. Journal of Controlled Release, 2019, 304, 65-74.	9.9	30
23	Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS ONE, 2017, 12, e0176401.	2.5	30
24	Parenteral vaccination protects against transcervical infection with Chlamydia trachomatis and generate tissue-resident T cells post-challenge. Npj Vaccines, 2020, 5, 7.	6.0	26
25	A Multi-Component Prime-Boost Vaccination Regimen with a Consensus MOMP Antigen Enhances Chlamydia trachomatis Clearance. Frontiers in Immunology, 2016, 7, 162.	4.8	24
26	Identification of CT521 as a Frequent Target of Th1 Cells in Patients with UrogenitalChlamydia trachomatisInfection. Journal of Infectious Diseases, 2006, 194, 1258-1266.	4.0	22
27	The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine, 2017, 35, 1705-1711.	3.8	21
28	Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies. PLoS ONE, 2015, 10, e0141209.	2.5	20
29	Chitin-derived polymer deacetylation regulates mitochondrial reactive oxygen species dependent cGAS-STING and NLRP3 inflammasome activation. Biomaterials, 2021, 275, 120961.	11.4	20
30	Identification of Human T Cell Targets Recognized during <i>Chlamydia trachomatis</i> Genital Infection. Journal of Infectious Diseases, 2007, 196, 1546-1552.	4.0	19
31	A Chlamydia trachomatis VD1-MOMP vaccine elicits cross-neutralizing and protective antibodies against C/C-related complex serovars. Npj Vaccines, 2021, 6, 58.	6.0	15
32	A flow cytometryâ€based assay to determine the phagocytic activity of both clinical and nonclinical antibody samples against <i>Chlamydia trachomatis</i> International Society for Analytical Cytology, 2018, 93, 525-532.	1.5	14
33	Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine, 2014, 32, 685-692.	3.8	13
34	Intrauterine inoculation of minipigs with Chlamydia trachomatis during diestrus establishes a longer lasting infection compared to vaginal inoculation during estrus. Microbes and Infection, 2017, 19, 334-342.	1.9	12
35	Th1/Th17 T cell Tissue-Resident Immunity Increases Protection, But Is Not Required in a Vaccine Strategy Against Genital Infection With Chlamydia trachomatis. Frontiers in Immunology, 2021, 12, 790463.	4.8	11
36	Characterization of cytological changes, IgA, IgG and IL-8 levels and pH value in the vagina of prepubertal and sexually mature Ellegaard Göttingen minipigs during an estrous cycle. Developmental and Comparative Immunology, 2016, 59, 57-62.	2.3	10

#	Article	IF	CITATIONS
37	Genital tract lesions in sexually mature $G\tilde{A}^{\P}$ ttingen minipigs during the initial stages of experimental vaginal infection with Chlamydia trachomatis serovar D. BMC Veterinary Research, 2016, 12, 200.	1.9	8
38	Genital Infiltrations of CD4+ and CD8+ T Lymphocytes, IgA+ and IgG+ Plasma Cells and Intra-Mucosal Lymphoid Follicles Associate With Protection Against Genital Chlamydiatrachomatis Infection in Minipigs Intramuscularly Immunized With UV-Inactivated Bacteria Adjuvanted With CAF01. Frontiers in Microbiology, 2019, 10, 197.	3.5	7
39	Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein–Based Fusion Antigen CTH522 Into Protein Nanoparticles. Journal of Pharmaceutical Sciences, 2018, 107, 1690-1700.	3.3	3
40	Type I IFN signalling is required for cationic adjuvant formulation (CAF)01-induced cellular immunity and mucosal priming. Vaccine, 2020, 38, 635-643.	3.8	2