
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640217/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.                                                                                                                                     | 12.6 | 3,227     |
| 2  | A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.                                                                                                                                                  | 27.8 | 1,838     |
| 3  | DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 2011, 480, 490-495.                                                                                                                   | 27.8 | 1,203     |
| 4  | An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.                                                                                                                          | 28.9 | 667       |
| 5  | Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences of the<br>United States of America, 1999, 96, 9716-9720.                                                                      | 7.1  | 510       |
| 6  | Decay Rates of Human mRNAs: Correlation With Functional Characteristics and Sequence Attributes.<br>Genome Research, 2003, 13, 1863-1872.                                                                                 | 5.5  | 467       |
| 7  | Sox4 Is a Master Regulator of Epithelial-Mesenchymal Transition by Controlling Ezh2 Expression and Epigenetic Reprogramming. Cancer Cell, 2013, 23, 768-783.                                                              | 16.8 | 415       |
| 8  | The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.                                                                    | 21.4 | 408       |
| 9  | Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads. Molecular<br>Biology and Evolution, 2014, 31, 1077-1088.                                                                                  | 8.9  | 399       |
| 10 | Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics, 2007, 8, 69.                                                                                                         | 2.6  | 282       |
| 11 | ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome<br>Research, 2014, 24, 869-884.                                                                                                 | 5.5  | 278       |
| 12 | Scaling laws in the functional content of genomes. Trends in Genetics, 2003, 19, 479-484.                                                                                                                                 | 6.7  | 267       |
| 13 | Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.                                                                                                                | 0.6  | 263       |
| 14 | PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny. PLoS Computational Biology, 2005, 1, e67.                                                                                                          | 3.2  | 236       |
| 15 | Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, 2012, 18, 529-537. | 30.7 | 224       |
| 16 | Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics, 2005, 6, 267.                                                                                                             | 2.6  | 219       |
| 17 | The frequency distribution of gene family sizes in complete genomes. Molecular Biology and Evolution, 1998, 15, 583-589.                                                                                                  | 8.9  | 201       |
| 18 | Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian<br>method. Molecular Systems Biology, 2008, 4, 165.                                                                         | 7.2  | 173       |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A probabilistic method to detect regulatory modules. Bioinformatics, 2003, 19, i292-i301.                                                                               | 4.1  | 172       |
| 20 | Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments. PLoS<br>Computational Biology, 2010, 6, e1000633.                                    | 3.2  | 171       |
| 21 | Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nature<br>Communications, 2014, 5, 5465.                                   | 12.8 | 164       |
| 22 | SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates. Nucleic<br>Acids Research, 2012, 41, D214-D220.                                | 14.5 | 137       |
| 23 | Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology, 2009, 10, R79.                  | 9.6  | 131       |
| 24 | Klf4 Is a Transcriptional Regulator of Genes Critical for EMT, Including Jnk1 (Mapk8). PLoS ONE, 2013, 8, e57329.                                                       | 2.5  | 130       |
| 25 | A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nature<br>Methods, 2013, 10, 253-255.                                             | 19.0 | 129       |
| 26 | SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Research, 2007, 35, D127-D131.                                                   | 14.5 | 123       |
| 27 | MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics, 2012, 28, 487-494. | 4.1  | 114       |
| 28 | Tead2 expression levels control Yap/Taz subcellular distribution, zyxin expression, and epithelial-mesenchymal transition. Journal of Cell Science, 2014, 127, 1523-36. | 2.0  | 113       |
| 29 | The functional importance of telomere clustering: Global changes in gene expression result from SIR factor dispersion. Genome Research, 2009, 19, 611-625.              | 5.5  | 110       |
| 30 | Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting.<br>Genome Research, 2013, 23, 60-73.                                   | 5.5  | 108       |
| 31 | Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nature Communications, 2018, 9, 212.       | 12.8 | 105       |
| 32 | Metastable Evolutionary Dynamics: Crossing Fitness Barriers or Escaping via Neutral Paths?. Bulletin of Mathematical Biology, 2000, 62, 799-848.                        | 1.9  | 99        |
| 33 | Statistical Dynamics of the Royal Road Genetic Algorithm. Theoretical Computer Science, 1999, 229, 41-102.                                                              | 0.9  | 98        |
| 34 | MicroRNA-221–222 Regulate the Cell Cycle in Mast Cells. Journal of Immunology, 2009, 182, 433-445.                                                                      | 0.8  | 95        |
| 35 | Investigate the origins of COVID-19. Science, 2021, 372, 694-694.                                                                                                       | 12.6 | 92        |
| 36 | Expression noise facilitates the evolution of gene regulation. ELife, 2015, 4, .                                                                                        | 6.0  | 88        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Finite populations induce metastability in evolutionary search. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 1997, 229, 144-150.                                                          | 2.1  | 85        |
| 38 | Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of<br>basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Research, 2013, 15,<br>R36. | 5.0  | 82        |
| 39 | The Corepressor NCoR1 Antagonizes PGC-1 <i>α</i> and Estrogen-Related Receptor <i>α</i> in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 4913-4924. | 2.3  | 74        |
| 40 | A Simple Physical Model Predicts Small Exon Length Variations. PLoS Genetics, 2006, 2, e45.                                                                                                                          | 3.5  | 69        |
| 41 | FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biology, 2009, 10, R39.                                                        | 9.6  | 67        |
| 42 | Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli. BMC Microbiology, 2013, 13, 25.                                                     | 3.3  | 65        |
| 43 | The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases. Nucleic Acids<br>Research, 2016, 44, D27-D37.                                                                                      | 14.5 | 64        |
| 44 | Computational analysis of small RNA cloning data. Methods, 2008, 44, 13-21.                                                                                                                                          | 3.8  | 61        |
| 45 | Splice Variation in Mouse Full-Length cDNAs Identified by Mapping to the Mouse Genome. Genome Research, 2002, 12, 1377-1385.                                                                                         | 5.5  | 60        |
| 46 | Probabilistic clustering of sequences: Inferring new bacterial regulons by comparative genomics.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7323-7328.            | 7.1  | 57        |
| 47 | Universal patterns of purifying selection at noncoding positions in bacteria. Genome Research, 2008, 18, 148-160.                                                                                                    | 5.5  | 55        |
| 48 | Influenza Escapes Immunity Along Neutral Networks. Science, 2006, 314, 1884-1886.                                                                                                                                    | 12.6 | 54        |
| 49 | Timescales and bottlenecks in miRNAâ€dependent gene regulation. Molecular Systems Biology, 2013, 9, 711.                                                                                                             | 7.2  | 54        |
| 50 | Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC. Genome<br>Biology, 2018, 19, 44.                                                                                           | 8.8  | 54        |
| 51 | Scaling laws in functional genome content across prokaryotic clades and lifestyles. Trends in Genetics, 2009, 25, 243-247.                                                                                           | 6.7  | 52        |
| 52 | Bayesian inference of gene expression states from single-cell RNA-seq data. Nature Biotechnology,<br>2021, 39, 1008-1016.                                                                                            | 17.5 | 50        |
| 53 | Initiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanism. ELife, 2019, 8, .                                                                    | 6.0  | 50        |
| 54 | Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Research, 2011, 39, D856-D860.                                                                  | 14.5 | 49        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Chromatin measurements reveal contributions of synthesis and decay to steadyâ€state mRNA levels.<br>Molecular Systems Biology, 2012, 8, 593.                                                                                                            | 7.2  | 48        |
| 56 | A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating <i>Drosophila</i> wing development. Genome Research, 2015, 25, 514-523.                                                 | 5.5  | 45        |
| 57 | Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. Journal of Clinical Investigation, 2014, 124, 1568-1581.                                                                                                       | 8.2  | 43        |
| 58 | Finding regulatory elements and regulatory motifs: a general probabilistic framework. BMC<br>Bioinformatics, 2007, 8, S4.                                                                                                                               | 2.6  | 42        |
| 59 | Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. ELife, 2021, 10, .                                                                                                                                | 6.0  | 42        |
| 60 | Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. European Journal of Human Genetics, 2010, 18, 1209-1215.                                                          | 2.8  | 39        |
| 61 | Tead transcription factors differentially regulate cortical development. Scientific Reports, 2020, 10, 4625.                                                                                                                                            | 3.3  | 38        |
| 62 | Dynamics of One-pass Germinal Center Models: Implications for Affinity Maturation. Bulletin of Mathematical Biology, 2000, 62, 121-153.                                                                                                                 | 1.9  | 35        |
| 63 | Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory. Machine Learning, 2001, 45, 77-114.                                                                                                                                           | 5.4  | 35        |
| 64 | Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Research, 2014, 42, 9313-9326.                                                                           | 14.5 | 32        |
| 65 | Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program. Molecular and Cellular Biology, 2014, 34, 2996-3012.                                                                      | 2.3  | 32        |
| 66 | Correlating Gene Expression Variation with cis-Regulatory Polymorphism in Saccharomyces cerevisiae. Genome Biology and Evolution, 2010, 2, 697-707.                                                                                                     | 2.5  | 31        |
| 67 | Optimizing epochal evolutionary search: population-size independent theory. Computer Methods in<br>Applied Mechanics and Engineering, 2000, 186, 171-194.                                                                                               | 6.6  | 30        |
| 68 | Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters. PLoS ONE, 2011, 6, e24279.                                                                                                           | 2.5  | 30        |
| 69 | The types and prevalence of alternative splice forms. Current Opinion in Structural Biology, 2006, 16, 362-367.                                                                                                                                         | 5.7  | 29        |
| 70 | Genome-wide Expression Profiling, In Vivo DNA Binding Analysis, and Probabilistic Motif Prediction<br>Reveal Novel Abf1 Target Genes during Fermentation, Respiration, and Sporulation in Yeast. Molecular<br>Biology of the Cell, 2008, 19, 2193-2207. | 2.1  | 29        |
| 71 | Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network. PLoS Biology, 2021, 19, e3001491.                                                                   | 5.6  | 29        |
| 72 | Nucleosome Free Regions in Yeast Promoters Result from Competitive Binding of Transcription<br>Factors That Interact with Chromatin Modifiers. PLoS Computational Biology, 2013, 9, e1003181.                                                           | 3.2  | 28        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The evolution of domain-content in bacterial genomes. Biology Direct, 2008, 3, 51.                                                                                                | 4.6  | 26        |
| 74 | Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.                             | 21.4 | 26        |
| 75 | Singleâ€cell <scp>mRNA</scp> profiling reveals the hierarchical response of mi <scp>RNA</scp> targets to mi <scp>RNA</scp> induction. Molecular Systems Biology, 2018, 14, e8266. | 7.2  | 24        |
| 76 | Transformation fingerprint: induced STAT3-C, v-Src and Ha-Ras cause small initial changes but similar<br>established profiles in mRNA. Oncogene, 2004, 23, 8455-8463.             | 5.9  | 23        |
| 77 | SPA: A Probabilistic Algorithm for Spliced Alignment. PLoS Genetics, 2006, 2, e24.                                                                                                | 3.5  | 21        |
| 78 | An epigenetic profile of early Tâ€cell development from multipotent progenitors to committed Tâ€cell<br>descendants. European Journal of Immunology, 2014, 44, 1181-1193.         | 2.9  | 21        |
| 79 | Quantifying the strength of miRNA–target interactions. Methods, 2015, 85, 90-99.                                                                                                  | 3.8  | 21        |
| 80 | The Evolutionary Unfolding of Complexity. Natural Computing Series, 2002, , 67-94.                                                                                                | 2.2  | 20        |
| 81 | The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.<br>Molecular Endocrinology, 2016, 30, 809-825.                                   | 3.7  | 20        |
| 82 | Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine. Lecture Notes in<br>Computer Science, 2014, , 25-36.                                           | 1.3  | 20        |
| 83 | Analysis of Human Immunodeficiency Virus Cytopathicity by Using a New Method for Quantitating<br>Viral Dynamics in Cell Culture. Journal of Virology, 2005, 79, 4025-4032.        | 3.4  | 18        |
| 84 | Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Research, 2014, 42, 4180-4195.                | 14.5 | 17        |
| 85 | Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?. PLoS<br>Computational Biology, 2016, 12, e1004726.                                    | 3.2  | 16        |
| 86 | Scaling Laws in the Functional Content of Genomes. , 2006, , 236-253.                                                                                                             |      | 14        |
| 87 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS<br>ONE, 2020, 15, e0240233.                                                     | 2.5  | 14        |
| 88 | Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. Nucleic<br>Acids Research, 2014, 42, W436-W441.                                   | 14.5 | 13        |
| 89 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. PLoS Biology, 2020,<br>18, e3000952.                                                             | 5.6  | 13        |
| 90 | Detecting Regulatory Sites Using PhyloGibbs. Methods in Molecular Biology, 2007, 395, 381-402.                                                                                    | 0.9  | 11        |

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors. PLoS Computational Biology, 2017, 13, e1005176. | 3.2  | 10        |
| 92  | Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs. Genome Research, 2019, 29, 1164-1177.                                                  | 5.5  | 7         |
| 93  | PhyloGibbs: A Gibbs Sampler Incorporating Phylogenetic Information. Lecture Notes in Computer Science, 2005, , 30-41.                                                             | 1.3  | 5         |
| 94  | ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data.<br>Methods, 2015, 85, 62-74.                                                   | 3.8  | 5         |
| 95  | An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 141, 369.                                                                                      | 28.9 | 4         |
| 96  | The ISMARA client. F1000Research, 2016, 5, 2851.                                                                                                                                  | 1.6  | 4         |
| 97  | Computational Analysis of Full-length cDNAs Reveals Frequent Coupling Between Transcriptional and Splicing Programs. DNA Research, 2008, 15, 63-72.                               | 3.4  | 3         |
| 98  | A Bayesian Algorithm for Reconstructing Two-Component Signaling Networks. Lecture Notes in<br>Computer Science, 2006, , 44-55.                                                    | 1.3  | 0         |
| 99  | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 100 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 101 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 102 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 103 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 104 | Subpopulations of sensorless bacteria drive fitness in fluctuating environments. , 2020, 18, e3000952.                                                                            |      | 0         |
| 105 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. , 2020, 15, e0240233.                                                                |      | 0         |
| 106 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. , 2020, 15, e0240233.                                                                |      | 0         |
| 107 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. , 2020, 15, e0240233.                                                                |      | 0         |
| 108 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. , 2020, 15,                                                                          |      | 0         |

e0240233.

0

| #   | Article                                                                                                            | IF | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------|----|-----------|
| 109 | Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. , 2020, 15, e0240233. |    | 0         |

110 Detecting Regulatory Sites Using PhyloGibbs. , 0, , 381-402.