Aydin Secer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401762/publications.pdf Version: 2024-02-01

AVDIN SECED

#	Article	IF	CITATIONS
1	Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations. Engineering With Computers, 2023, 39, 1363-1374.	6.1	1
2	Traveling wave structures of some fourth-order nonlinear partial differential equations. Journal of Ocean Engineering and Science, 2023, 8, 124-132.	4.3	11
3	A comparison of analytical solutions of nonlinear complex generalized Zakharov dynamical system for various definitions of the differential operator. Electronic Research Archive, 2022, 30, 335-361.	0.9	17
4	On the optical soliton solutions of Kundu–Mukherjee–Naskar equation via two different analytical methods. Optik, 2022, 257, 168761.	2.9	47
5	Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives. Modern Physics Letters B, 2022, 36, .	1.9	24
6	Novel soliton solutions of Sasa–Satsuma model with local derivative via an analytical technique. Journal of Laser Applications, 2022, 34, .	1.7	8
7	Optical solitons with Kudryashov's sextic power-law nonlinearity. Optik, 2022, 261, 169202.	2.9	41
8	Dark, bright and singular optical solutions of the Kaup–Newell model with two analytical integration schemes. Optik, 2022, 261, 169110.	2.9	22
9	On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity. Optical and Quantum Electronics, 2022, 54, .	3.3	26
10	Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics, 2022, 54, .	3.3	43
11	Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik, 2022, 265, 169545.	2.9	25
12	An encyclopedia of Kudryashov's integrability approaches applicable to optoelectronic devices. Optik, 2022, 265, 169499.	2.9	60
13	Analytical solutions of simplified modified Camassa-Holm equationÂwith conformable and M-truncated derivatives: A comparative study. Journal of Ocean Engineering and Science, 2022, , .	4.3	13
14	Wavelet-based Numerical Approaches for Solving the Korteweg-de Vries (KdV) Equation. Turkish Journal of Mathematics & Computer Science, 2022, 14, 44-55.	0.9	1
15	Dispersive optical solitons of Biswas–Arshed equation with a couple of novel approaches. Optik, 2022, 265, 169547.	2.9	15
16	Optical soliton perturbation with Fokas–Lenells equation via enhanced modified extended tanh-expansion approach. Optik, 2022, 267, 169615.	2.9	25
17	Soliton Solutions of \$\$(2+1)\$\$ Dimensional Heisenberg Ferromagnetic Spin Equation by the Extended Rational \$\$sine-cosine\$\$ and \$\$sinh-cosh\$\$ Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	18
18	The analytical solutions of Zoomeron equation via extended rational sin-cos and sinh-cosh methods. Physica Scripta, 2021, 96, 094002.	2.5	43

#	Article	IF	CITATIONS
19	An Improved Bees Algorithm for Training Deep Recurrent Networks for Sentiment Classification. Symmetry, 2021, 13, 1347.	2.2	11
20	A new operational matrix of fractional derivative based on the generalized Gegenbauer–Humbert polynomials to solve fractional differential equations. AEJ - Alexandria Engineering Journal, 2021, 60, 3509-3519.	6.4	3
21	Optical solitons and other solutions to the Radhakrishnan-Kundu-Lakshmanan equation. Optik, 2021, 242, 167363.	2.9	34
22	On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach. Optik, 2021, 245, 167641.	2.9	40
23	Optical Soliton Solutions to Chen Lee Liu model by the modified extended tanh expansion scheme. Optik. 2021. 245.167643 Optical solitons of the <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.9</td><td>39</td></mml:math>	2.9	39
24	Biswas–Milovic equation using modified extended <mml:math< td=""><td>2.9</td><td>39</td></mml:math<>	2.9	39
25	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e325" altimg="si4_syg"; <mml: An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equationâ^†. AEJ - Alexandria Engineering Journal, 2021, 60, 5331-5340.</mml: 	6.4	22
26	MS-TR: A Morphologically enriched sentiment Treebank and recursive deep models for compositional semantics in Turkish. Cogent Engineering, 2021, 8, 1893621.	2.2	1
27	An algorithm for numerical solution of some nonlinear multi-dimensional parabolic partial differential equations. Journal of Computational Science, 2021, 56, 101487.	2.9	4
28	A Jacobi wavelet collocation method for fractional fisher's equation in time. Thermal Science, 2020, 24, 119-129.	1.1	18
29	The generalized Gegenbauer-Humberts wavelet for solving fractional differential equations. Thermal Science, 2020, 24, 107-118.	1.1	2
30	The Asymptotic Behavior of Solutions of Discrete Nonlinear Fractional Equations. Fractional Calculus and Applied Analysis, 2020, 23, 1472-1482.	2.2	0
31	The generalized Gegenbauer-Humberts wavelet for solving fractional differential equations. Thermal Science, 2020, 24, 107-118.	1.1	0
32	A Jacobi wavelet collocation method for fractional fisher's equation in time. Thermal Science, 2020, 24, 119-129.	1.1	1
33	A reliable analytical approach for a fractional model of advection-dispersion equation. Nonlinear Engineering, 2019, 8, 107-116.	2.7	30
34	The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers' Equations with Time-Fractional Derivative. Mathematics, 2019, 7, 486.	2.2	22
35	An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation. Advances in Difference Equations, 2019, 2019, .	3.5	13
36	Modified Laguerre wavelet based Galerkin method for fractional and fractional-order delay differential equations. Thermal Science, 2019, 23, 13-21.	1.1	6

#	Article	IF	CITATIONS
37	Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions. Thermal Science, 2019, 23, 203-214.	1.1	5
38	Chebyshev wavelet collocation method for Ginzburg-Landau equation. Thermal Science, 2019, 23, 57-65.	1.1	2
39	Oscillation properties of solutions of fractional difference equations. Thermal Science, 2019, 23, 185-192.	1.1	3
40	A Hermite Polynomial Approach for Solving the SIR Model of Epidemics. Mathematics, 2018, 6, 305.	2.2	14
41	A New Operational Matrix of Fractional Derivatives to Solve Systems of Fractional Differential Equations via Legendre Wavelets. Mathematics, 2018, 6, 238.	2.2	17
42	Sinc-Galerkin method for solving hyperbolic partial differential equations. International Journal of Optimization and Control: Theories and Applications, 2018, 8, 250-258.	1.7	4
43	A new numerical approach for solving high-order linear and non-linear differantial equations. Thermal Science, 2018, 22, 67-77.	1.1	0
44	An efficient scheme for solving a system of fractional differential equations with boundary conditions. Advances in Difference Equations, 2017, 2017, .	3.5	7
45	Oscillatory behavior of solutions of differential equations with fractional order. Applied Mathematics and Information Sciences, 2017, 11, 683-691.	0.5	1
46	An efficient algorithm for solving fractional differential equations with boundary conditions. Open Physics, 2016, 14, 6-14.	1.7	20
47	Oscillation criteria for nonlinear fractional differential equation with damping term. Open Physics, 2016, 14, 119-128.	1.7	8
48	Oscillation of solutions for a class of nonlinear fractional difference equations. Journal of Nonlinear Science and Applications, 2016, 09, 5862-5869.	1.0	18
49	Application of Sinc-Galerkin Method for Solving Space-Fractional Boundary Value Problems. Mathematical Problems in Engineering, 2015, 2015, 1-10.	1.1	8
50	On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind. Mathematical Problems in Engineering, 2015, 2015, 1-7.	1.1	28
51	Solving nonlinear boundary value problems by the Galerkin method with sinc functions. Open Physics, 2015, 13, .	1.7	1
52	The common solution for a generalized equilibrium problem, a variational inequality problem and a hierarchical fixed point problem. Journal of Inequalities and Applications, 2015, 2015, .	1.1	1
53	Theory, Methods, and Applications of Fractional Calculus. Scientific World Journal, The, 2014, 2014, 1-2.	2.1	0
54	Convexity of Certainq-Integral Operators ofp-Valent Functions. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	15

#	Article	IF	CITATIONS
55	Majorization for a Class of Analytic Functions Defined by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>w><mml:mi>w</mml:mi>w</mml:mi>w>-Differentiation, Mathematical</mml:math 	1.1	7
56	Problems in Engineering, 2014, 2014, 1-5. A Generalized <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math> -Grüss Inequality Involving the Riemann-Liouville Fractional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M2"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math> -Integrals. Journal of Applied Mathematics, 2014, 2014, 1-6.	0.9	1
57	Numerical Solution of Fractional Benney Equation. Applied Mathematics and Information Sciences, 2014, 8, 1633-1637.	0.5	23
58	Stability, Synchronization Control and Numerical Solution of Fractional Shimizu–Morioka Dynamical System. Applied Mathematics and Information Sciences, 2014, 8, 1699-1705.	0.5	5
59	A Novel Matching of MR Images Using Gabor Wavelets. IETE Technical Review (Institution of) Tj ETQq1 1 0.784	314 _{.3} .gBT /	Overlock 10
60	Numerical Solution and Simulation of Second-Order Parabolic PDEs with Sinc-Galerkin Method Using Maple. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	4
61	The Time-Fractional Coupled-Korteweg-de-Vries Equations. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	56
62	A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	129
63	Wavelet-Petrov-Galerkin Method for Numerical Solution of Boussinesq Equation. Applied Mechanics and Materials, 2013, 319, 451-455.	0.2	1
64	Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013, 2013, .	0.7	22
65	A New Approximate Analytical Solution of Kuramoto –Sivashinsky Equation Using Homotopy Analysis Method. Applied Mathematics and Information Sciences, 2013, 7, 267-271.	0.5	25
66	Efficient Variational Approaches for Deformable Registration of Images. Abstract and Applied Analysis, 2012, 2012, 1-8.	0.7	1
67	Curvature-driven diffusion-based mathematical image registration models. Advances in Difference Equations, 2012, 2012, 193.	3.5	2
68	Approximate analytic solution of fractional heat-like and wave-like equations with variable coefficients using the differential transforms method. Advances in Difference Equations, 2012, 2012, .	3.5	14
69	A computational method using multiresolution for volumetric data integration. Boundary Value Problems, 2012, 2012, .	0.7	1
70	An efficient computer application of the sinc-Galerkin approximation for nonlinear boundary value problems. Boundary Value Problems, 2012, 2012, .	0.7	4
71	The sinc-Galerkin method and its applications on singular Dirichlet-type boundary value problems. Boundary Value Problems, 2012, 2012, .	0.7	9
72	Efficient solutions of systems of fractional PDEs by the differential transform method. Advances in Difference Equations, 2012, 2012, .	3.5	24

#	Article	IF	CITATIONS
73	Solitary wave solutions of chiral nonlinear Schrödinger equations. Modern Physics Letters B, 0, , 2150472.	1.9	12
74	Sinc-Galerkin method for solving system of singular perturbed reaction-diffusion problems. Sigma Journal of Engineering and Natural Sciences, 0, , 203-212.	0.0	0
75	A collocation method for solving boundary value problems of fractional order. Sakarya University Journal of Science, 0, , 1-1.	0.7	0
76	Solving the fractional Jaulent–Miodek system via a modified Laplace decomposition method. Waves in Random and Complex Media, 0, , 1-14.	2.7	10