
Yao Liang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paracrine Action Enhances the Effects of Autologous Mesenchymal Stem Cell Transplantation on Vascular Regeneration in Rat Model of Myocardial Infarction. Annals of Thoracic Surgery, 2005, 80, 229-237.	1.3	378
2	Improved Graft Mesenchymal Stem Cell Survival in Ischemic Heart With a Hypoxia-Regulated Heme Oxygenase-1 Vector. Journal of the American College of Cardiology, 2005, 46, 1339-1350.	2.8	377
3	Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 2015, 192, 61-69.	1.7	350
4	Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression. Circulation Research, 2009, 104, 1209-1216.	4.5	344
5	Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory Peptides, 2004, 117, 3-10.	1.9	338
6	Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 2013, 431, 566-571.	2.1	316
7	Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease. International Journal of Molecular Sciences, 2016, 17, 356.	4.1	207
8	Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-12.	2.8	154
9	Long Non-Coding RNAs as Master Regulators in Cardiovascular Diseases. International Journal of Molecular Sciences, 2015, 16, 23651-23667.	4.1	140
10	Proinflammatory Phenotype of Perivascular Adipocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1631-1636.	2.4	132
11	FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. Journal of Experimental and Clinical Cancer Research, 2017, 36, 8.	8.6	124
12	Histone Deacetylase 9 Is a Negative Regulator of Adipogenic Differentiation. Journal of Biological Chemistry, 2011, 286, 27836-27847.	3.4	120
13	MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovascular Research, 2015, 106, 387-397.	3.8	100
14	Transplanted Perivascular Adipose Tissue Accelerates Injury-Induced Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1723-1730.	2.4	98
15	Hsp20 Functions as a Novel Cardiokine in Promoting Angiogenesis via Activation of VEGFR2. PLoS ONE, 2012, 7, e32765.	2.5	95
16	Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiological Genomics, 2013, 45, 697-709.	2.3	92
17	Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomolecules and Therapeutics, 2017, 25, 12-25.	2.4	87
18	Emerging role of extracellular vesicles in musculoskeletal diseases. Molecular Aspects of Medicine, 2018, 60, 123-128	6.4	86

Yao Liang Tang

#	Article	IF	CITATIONS
19	Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacologica Sinica, 2018, 39, 1100-1109.	6.1	83
20	Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium. Journal of Cardiovascular Translational Research, 2018, 11, 420-428.	2.4	80
21	Protection From Ischemic Heart Injury by a Vigilant Heme Oxygenase-1 Plasmid System. Hypertension, 2004, 43, 746-751.	2.7	76
22	A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. Journal of Molecular and Cellular Cardiology, 2015, 81, 49-53.	1.9	74
23	Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H371-H383.	3.2	74
24	A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 114, 72-82.	1.9	72
25	Genetic modification of stem cells for transplantation. Advanced Drug Delivery Reviews, 2008, 60, 160-172.	13.7	68
26	Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid-mediated stromal-cell-derived factor-11± treatment. Regulatory Peptides, 2005, 125, 1-8.	1.9	64
27	MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovascular Research, 2017, 113, 1603-1614.	3.8	62
28	Modification of Cardiac Progenitor Cell-Derived Exosomes by miR-322 Provides Protection against Myocardial Infarction through Nox2-Dependent Angiogenesis. Antioxidants, 2019, 8, 18.	5.1	61
29	A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochemical and Biophysical Research Communications, 2007, 359, 877-883.	2.1	58
30	CXCR4-Mediated Bone Marrow Progenitor Cell Maintenance and Mobilization Are Modulated by c-kit Activity. Circulation Research, 2010, 107, 1083-1093.	4.5	56
31	A Vigilant, Hypoxia-Regulated Heme Oxygenase-1 Gene Vector in the Heart Limits Cardiac Injury After Ischemia-Reperfusion In Vivo. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10, 251-263.	2.0	55
32	MiR-17-92 cluster is a novel regulatory gene of cardiac ischemic/reperfusion injury. Medical Hypotheses, 2013, 81, 108-110.	1.5	54
33	miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4–JNK pathway. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 975-983.	4.9	53
34	Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 2018, 39, 569-578.	6.1	51
35	Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. American Journal of Physiology - Cell Physiology, 2014, 307, C358-C372.	4.6	48
36	Aryl Hydrocarbon Receptor: A New Player of Pathogenesis and Therapy in Cardiovascular Diseases. BioMed Research International, 2018, 2018, 1-11.	1.9	47

YAO LIANG TANG

#	Article	IF	CITATIONS
37	Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 2018, 39, 579-586.	6.1	46
38	Rosuvastatin Enhances Angiogenesis via eNOS-Dependent Mobilization of Endothelial Progenitor Cells. PLoS ONE, 2013, 8, e63126.	2.5	42
39	MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochemical and Biophysical Research Communications, 2014, 446, 952-958.	2.1	41
40	Specific β1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. Journal of Hypertension, 2007, 25, 197-205.	0.5	39
41	MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. Journal of Molecular and Cellular Cardiology, 2019, 133, 67-74.	1.9	37
42	A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Therapy, 2005, 12, 1163-1170.	4.5	33
43	HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study. Basic Research in Cardiology, 2010, 105, 431-442.	5.9	33
44	Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 102, 53-60.	1.9	33
45	Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: Improving the safety of iPS cell transplantation to myocardium. Cell Cycle, 2014, 13, 762-771.	2.6	31
46	Regulation of Vascular Calcification by Growth Hormone–Releasing Hormone and Its Agonists. Circulation Research, 2018, 122, 1395-1408.	4.5	31
47	Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis. Journal of Cardiovascular Translational Research, 2018, 11, 429-437.	2.4	29
48	The Role of <i>Notch 1</i> Activation in Cardiosphere Derived Cell Differentiation. Stem Cells and Development, 2012, 21, 2122-2129.	2.1	27
49	E2F1 suppresses cardiac neovascularization by down-regulating VEGF and PIGF expression. Cardiovascular Research, 2014, 104, 412-422.	3.8	27
50	Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Medical Hypotheses, 2016, 88, 6-9.	1.5	27
51	Regulation of Vascular Contractility and Blood Pressure by the E2F2 Transcription Factor. Circulation, 2009, 120, 1213-1221.	1.6	26
52	Assessing <i>in vitro</i> stemâ€cell function and tracking engraftment of stem cells in ischaemic hearts by using novel <scp>iRFP</scp> gene labelling. Journal of Cellular and Molecular Medicine, 2014, 18, 1889-1894.	3.6	25
53	Aging-Associated Differences in Epitranscriptomic m6A Regulation in Response to Acute Cardiac Ischemia/Reperfusion Injury in Female Mice. Frontiers in Pharmacology, 2021, 12, 654316.	3.5	25
54	Profound Actions of an Agonist of Growth Hormone–Releasing Hormone on Angiogenic Therapy by Mesenchymal Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 663-672.	2.4	24

YAO LIANG TANG

#	Article	IF	CITATIONS
55	A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: Implications for diet-induced obesity. Journal of Biological Chemistry, 2017, 292, 6312-6324.	3.4	23
56	Enhancer of zeste homolog 2 (EZH2) regulates adipocyte lipid metabolism independent of adipogenic differentiation: Role of apolipoprotein E. Journal of Biological Chemistry, 2019, 294, 8577-8591.	3.4	22
57	Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: Role of exosomal SOD3. FASEB Journal, 2022, 36, e22177.	0.5	21
58	Exosome-Derived Dystrophin from Allograft Myogenic Progenitors Improves Cardiac Function in Duchenne Muscular Dystrophic Mice. Journal of Cardiovascular Translational Research, 2018, 11, 412-419.	2.4	19
59	Regenerative Therapy for Cardiomyopathies. Journal of Cardiovascular Translational Research, 2018, 11, 357-365.	2.4	19
60	Contrasting roles of E2F2 and E2F3 in endothelial cell growth and ischemic angiogenesis. Journal of Molecular and Cellular Cardiology, 2013, 60, 68-71.	1.9	17
61	Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-coding RNA Investigation, 2017, 1, 24-24.	0.6	17
62	Extracellular vesicles as novel biomarkers and pharmaceutic targets of diseases. Acta Pharmacologica Sinica, 2018, 39, 499-500.	6.1	17
63	MiR-150 Attenuates Maladaptive Cardiac Remodeling Mediated by Long Noncoding RNA MIAT and Directly Represses Profibrotic <i>Hoxa4</i> . Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008686.	3.9	17
64	Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock, 2018, 50, 627-639.	2.1	15
65	Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical Hypotheses, 2018, 110, 97-100.	1.5	15
66	Effective restoration of dystrophin expression in iPSC Mdx-derived muscle progenitor cells using the CRISPR/Cas9 system and homology-directed repair technology. Computational and Structural Biotechnology Journal, 2020, 18, 765-773.	4.1	15
67	Blockade of RBP-J-Mediated Notch Signaling Pathway Exacerbates Cardiac Remodeling after Infarction by Increasing Apoptosis in Mice. BioMed Research International, 2018, 2018, 1-8.	1.9	14
68	Cross Talk Between the Notch Signaling and Noncoding RNA on the Fate of Stem Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 175-193.	1.7	13
69	β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2018, 118, 225-236.	1.9	13
70	Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding. Molecular and Cellular Endocrinology, 2018, 473, 79-88.	3.2	12
71	The Small GTPases Rab27b Regulates Mitochondrial Fatty Acid Oxidative Metabolism of Cardiac Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 209.	3.7	11
72	Cellular Therapy With Autologous Skeletal Myoblasts for Ischemic Heart Disease and Heart Failure. , 2005, 112, 193-204.		10

Yao Liang Tang

#	Article	IF	CITATIONS
73	Isolation of Extracellular Vesicles from Stem Cells. Methods in Molecular Biology, 2017, 1660, 389-394.	0.9	10
74	Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Medical Hypotheses, 2020, 135, 109451.	1.5	10
75	The Impaired Bioenergetics of Diabetic Cardiac Microvascular Endothelial Cells. Frontiers in Endocrinology, 2021, 12, 642857.	3.5	10
76	Autologous Mesenchymal Stem Cells for Post-Ischemic Myocardial Repair. , 2005, 112, 183-192.		9
77	Combinatorial treatment of bone marrow stem cells and stromal cell-derived factor 1 improves glycemia and insulin production in diabetic mice. Molecular and Cellular Endocrinology, 2011, 345, 88-96.	3.2	9
78	Stem Cell-Released Microvesicles and Exosomes as Novel Biomarkers and Treatments of Diseases. Stem Cells International, 2016, 2016, 1-2.	2.5	8
79	RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 5554.	4.1	8
80	Cardiomyocyte microRNA-150 confers cardiac protection and directly represses proapoptotic small proline–rich protein 1A. JCI Insight, 2021, 6, .	5.0	8
81	Genetic Modification of Stem Cells for Cardiac, Diabetic, and Hemophilia Transplantation Therapies. Progress in Molecular Biology and Translational Science, 2012, 111, 285-304.	1.7	7
82	Two-Step Protocol for Isolation and Culture of Cardiospheres. Methods in Molecular Biology, 2013, 1036, 75-80.	0.9	7
83	Enhancing stem cell survival in an ischemic heart by CRISPR-dCas9-based gene regulation. Medical Hypotheses, 2014, 83, 702-705.	1.5	7
84	MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells. Stem Cells International, 2018, 2018, 1-13.	2.5	7
85	Stem cell therapy for heart failure: the science and current progress. Future Cardiology, 2008, 4, 285-298.	1.2	6
86	Identification of gene signatures regulated by carvedilol in mouse heart. Physiological Genomics, 2015, 47, 376-385.	2.3	6
87	Imaging and Tracking Stem Cell Engraftment in Ischemic Hearts by Near-Infrared Fluorescent Protein (iRFP) Labeling. Methods in Molecular Biology, 2019, 2150, 121-129.	0.9	6
88	Purification and Transplantation of Myogenic Progenitor Cell Derived Exosomes to Improve Cardiac Function in Duchenne Muscular Dystrophic Mice. Journal of Visualized Experiments, 2019, , .	0.3	6
89	Infrared Fluorescent Protein 1.4 Genetic Labeling Tracks Engrafted Cardiac Progenitor Cells in Mouse Ischemic Hearts. PLoS ONE, 2014, 9, e107841.	2.5	6
90	Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium. Stem Cell Research and Therapy, 2015, 6, 259.	5.5	5

YAO LIANG TANG

#	Article	IF	CITATIONS
91	Identification of critical molecular pathways involved in exosome-mediated improvement of cardiac function in a mouse model of muscular dystrophy. Acta Pharmacologica Sinica, 2021, 42, 529-535.	6.1	5
92	CRISPR/Cas9 Technology in Restoring Dystrophin Expression in iPSC-Derived Muscle Progenitors. Journal of Visualized Experiments, 2019, , .	0.3	4
93	MicroRNA cargo of extracellular vesicles released by skeletal muscle fibro-adipogenic progenitor cells is significantly altered with disuse atrophy and IL-1β deficiency. Physiological Genomics, 2022, 54, 296-304.	2.3	4
94	A circular RNA regulator quaking: a novel gold mine to be unfolded in doxorubicin-mediated cardiotoxicity. Non-coding RNA Investigation, 2018, 2, 19-19.	0.6	3
95	Noncoding RNAs and Stem Cell Function and Therapy. Stem Cells International, 2018, 2018, 1-2.	2.5	3
96	Identification of Stem Cells After Transplantation. Methods in Molecular Biology, 2013, 1036, 89-94.	0.9	2
97	Invited commentary. Annals of Thoracic Surgery, 2007, 83, 1499-1500.	1.3	1
98	A novel high throughput approach to screen for cardiac arrhythmic events following stem cell treatment. Medical Hypotheses, 2015, 84, 294-297.	1.5	1
99	Genomic-based diagnosis of arrhythmia disease in a personalized medicine era. Expert Review of Precision Medicine and Drug Development, 2016, 1, 497-504.	0.7	1
100	Using iRFP Genetic Labeling Technology to Track Tumorogenesis of Transplanted CRISPR/Cas9-Edited iPSC in Skeletal Muscle. Methods in Molecular Biology, 2020, 2126, 73-83.	0.9	1
101	Invited Commentary. Annals of Thoracic Surgery, 2008, 85, 580.	1.3	0
102	Preface. Progress in Molecular Biology and Translational Science, 2012, 111, xv-xvi.	1.7	0
103	Exosomal miRNAs derived from specific cardiac progenitor cells exert strong therapeutic effect on myocardial infarction. FASEB Journal, 2018, 32, 675.10.	0.5	0
104	Notch1 Overexpression in Cardiac Mesenchymal Stem Cells Renders their Exosomes Highly Effective in Promoting Angiogenesis and Cardiac Regeneration. FASEB Journal, 2019, 33, lb63.	0.5	0