Thorsten Lehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does the circulating ketoconazole metabolite N-deacetyl ketoconazole contribute to the drug-drug interaction potential of the parent compound?. European Journal of Pharmaceutical Sciences, 2022, 169, 106076.	1.9	5
2	A Novel Approach for Quantifying the Pharmacological Activity of T-Cell Engagers Utilizing In Vitro Time Course Experiments and Streamlined Data Analysis. AAPS Journal, 2022, 24, 7.	2.2	2
3	In Vitro–In Silico Modeling of Caffeine and Diclofenac Permeation in Static and Fluidic Systems with a 16HBE Lung Cell Barrier. Pharmaceuticals, 2022, 15, 250.	1.7	1
4	Physiologicallyâ€based pharmacokinetic modeling of dextromethorphan to investigate interindividual variability within CYP2D6 activity score groups. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 494-511.	1.3	16
5	Physiologically Based Pharmacokinetic (PBPK) Modeling of Clopidogrel and Its Four Relevant Metabolites for CYP2B6, CYP2C8, CYP2C19, and CYP3A4 Drug–Drug–Gene Interaction Predictions. Pharmaceutics, 2022, 14, 915.	2.0	5
6	Renal Transporterâ€Mediated Drugâ€Biomarker Interactions of the Endogenous Substrates Creatinine and N ¹ â€Methylnicotinamide: A PBPK Modeling Approach. Clinical Pharmacology and Therapeutics, 2022, 112, 687-698.	2.3	9
7	Mental Health and Health-Related Quality of Life in German Adolescents after the Third Wave of the COVID-19 Pandemic. Children, 2022, 9, 780.	0.6	8
8	A Physiologically Based Pharmacokinetic and Pharmacodynamic Model of the CYP3A4 Substrate Felodipine for Drug–Drug Interaction Modeling. Pharmaceutics, 2022, 14, 1474.	2.0	6
9	Physiologically Based Precision Dosing Approach for Drugâ€Drugâ€Gene Interactions: A Simvastatin Network Analysis. Clinical Pharmacology and Therapeutics, 2021, 109, 201-211.	2.3	23
10	Predicting Tumor Killing and T-Cell Activation by T-Cell Bispecific Antibodies as a Function of Target Expression: Combining <i>In Vitro</i> Experiments with Systems Modeling. Molecular Cancer Therapeutics, 2021, 20, 357-366.	1.9	18
11	Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug–Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics, 2021, 13, 270.	2.0	33
12	Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network. Pharmaceutics, 2021, 13, 331.	2.0	6
13	Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier—A Case Study from In Vitro to In Silico. Nanomaterials, 2021, 11, 1358.	1.9	4
14	A generic framework for the physiologicallyâ€based pharmacokinetic platform qualification of PKâ€Sim and its application to predicting cytochrome P450 3A4–mediated drug–drug interactions. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 633-644.	1.3	15
15	Cytokine Release Syndrome By T-cell–Redirecting Therapies: Can We Predict and Modulate Patient Risk?. Clinical Cancer Research, 2021, 27, 6083-6094.	3.2	9
16	External Model Performance Evaluation of Twelve Infliximab Population Pharmacokinetic Models in Patients with Inflammatory Bowel Disease. Pharmaceutics, 2021, 13, 1368.	2.0	13
17	Exhaled Propofol Concentrations Correlate With Plasma and Brain Tissue Concentrations in Rats. Anesthesia and Analgesia, 2021, 132, 110-118.	1.1	12
18	Toxicokinetics of U-47700, tramadol, and their main metabolites in pigs following intravenous administration: is a multiple species allometric scaling approach useful for the extrapolation of toxicokinetic parameters to humans?, Archives of Toxicology, 2021, 95, 3681-3693.	1.9	4

#	Article	IF	CITATIONS
19	Novel models for the prediction of drug–gene interactions. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 1293-1310.	1.5	11
20	Target-Mediated Population Pharmacokinetic Modeling of Endothelin Receptor Antagonists. Pharmaceutical Research, 2020, 37, 2.	1.7	6
21	A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug–Drug Interactions. Clinical Pharmacokinetics, 2020, 59, 781-808.	1.6	42
22	Physiologically-Based Pharmacokinetic (PBPK) Modeling Providing Insights into Fentanyl Pharmacokinetics in Adults and Pediatric Patients. Pharmaceutics, 2020, 12, 908.	2.0	10
23	A Physiologically-Based Pharmacokinetic Model of Trimethoprim for MATE1, OCT1, OCT2, and CYP2C8 Drug–Drug–Gene Interaction Predictions. Pharmaceutics, 2020, 12, 1074.	2.0	9
24	Physiologically Based Pharmacokinetic Models of Probenecid and Furosemide to Predict Transporter Mediated Drug-Drug Interactions. Pharmaceutical Research, 2020, 37, 250.	1.7	15
25	Physiologically Based Pharmacokinetic Modeling of Metoprolol Enantiomers and α-Hydroxymetoprolol to Describe CYP2D6 Drug-Gene Interactions. Pharmaceutics, 2020, 12, 1200.	2.0	15
26	A Physiologicallyâ€Based Quantitative Systems Pharmacology Model of the Incretin Hormones GLPâ€1 and GIP and the DPP4 Inhibitor Sitagliptin. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 353-362.	1.3	5
27	Data Digitizing: Accurate and Precise Data Extraction for Quantitative Systems Pharmacology and Physiologicallyâ€Based Pharmacokinetic Modeling. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 322-331.	1.3	54
28	Comprehensive Parent–Metabolite PBPK/PD Modeling Insights into Nicotine Replacement Therapy Strategies. Clinical Pharmacokinetics, 2020, 59, 1119-1134.	1.6	8
29	Physiologically-Based Pharmacokinetic (PBPK) Modeling of Buprenorphine in Adults, Children and Preterm Neonates. Pharmaceutics, 2020, 12, 578.	2.0	30
30	A Mechanistic, Enantioselective, Physiologically Based Pharmacokinetic Model of Verapamil and Norverapamil, Built and Evaluated for Drug–Drug Interaction Studies. Pharmaceutics, 2020, 12, 556.	2.0	10
31	The federal standard medication plan in practice: An observational cross-sectional study on prevalence and quality. Research in Social and Administrative Pharmacy, 2020, 16, 1370-1378.	1.5	4
32	Effective Removal of Dabigatran by Idarucizumab or Hemodialysis: A Physiologically Based Pharmacokinetic Modeling Analysis. Clinical Pharmacokinetics, 2020, 59, 809-825.	1.6	6
33	A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Drug–Drug–Gene Interaction Model of Metformin and Cimetidine in Healthy Adults and Renally Impaired Individuals. Clinical Pharmacokinetics, 2020, 59, 1419-1431.	1.6	29
34	Inhibition of Cyclinâ€Dependent Kinase 5: A Strategy to Improve Sorafenib Response in Hepatocellular Carcinoma Therapy. Hepatology, 2019, 69, 376-393.	3.6	38
35	Open Systems Pharmacology Community—An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 878-882.	1.3	58
36	Physiologically Based Pharmacokinetic Models for Prediction of Complex CYP2C8 and OATP1B1 (SLCO1B1) Drug–Drug–Gene Interactions: A Modeling Network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Clinical Pharmacokinetics, 2019, 58, 1595-1607.	1.6	30

#	Article	IF	CITATIONS
37	A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Model of Dabigatran Etexilate, Dabigatran and Dabigatran Glucuronide in Healthy Adults and Renally Impaired Patients. Clinical Pharmacokinetics, 2019, 58, 1577-1593.	1.6	16
38	Translational PBPK Modeling of the Protein Therapeutic and CD95L Inhibitor Asunercept to Develop Dose Recommendations for Its First Use in Pediatric Glioblastoma Patients. Pharmaceutics, 2019, 11, 152.	2.0	17
39	Physiologicallyâ€Based Pharmacokinetic Models for <scp>CYP</scp> 1A2 Drug–Drug Interaction Prediction: A Modeling Network of Fluvoxamine, Theophylline, Caffeine, Rifampicin, and Midazolam. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 296-307.	1.3	27
40	Population Pharmacokinetics of Mefloquine Intermittent Preventive Treatment for Malaria in Pregnancy in Gabon. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	3
41	How to disentangle psychobiological stress reactivity and recovery: A comparison of model-based and non-compartmental analyses of cortisol concentrations. Psychoneuroendocrinology, 2018, 90, 194-210.	1.3	46
42	Modeling Tolerance Development for the Effect on Heart Rate of the Selective S1P ₁ Receptor Modulator Ponesimod. Clinical Pharmacology and Therapeutics, 2018, 103, 1083-1092.	2.3	15
43	The feasibility of physiologically based pharmacokinetic modeling in forensic medicine illustrated by the example of morphine. International Journal of Legal Medicine, 2018, 132, 415-424.	1.2	7
44	A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin—integration of in vitro results, Phase I and Phase II data and model application for drug–drug interaction potential analysis. Cancer Chemotherapy and Pharmacology, 2018, 81, 291-304.	1.1	18
45	A Quantitative Systems Pharmacology Kidney Model of Diabetes Associated Renal Hyperfiltration and the Effects of <scp>SGLT</scp> Inhibitors. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 788-797.	1.3	14
46	Can toxicokinetics of (synthetic) cannabinoids in pigs after pulmonary administration be upscaled to humans by allometric techniques?. Biochemical Pharmacology, 2018, 155, 403-418.	2.0	9
47	Neovascular Ageâ€Related Macular Degeneration: A Visual Acuity Model of Natural Disease Progression and Ranibizumab Treatment Effect. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 660-669.	1.3	8
48	PBPK Models for CYP3A4 and Pâ€gp DDI Prediction: A Modeling Network of Rifampicin, Itraconazole, Clarithromycin, Midazolam, Alfentanil, and Digoxin. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 647-659.	1.3	109
49	Population nutrikinetics of green tea extract. PLoS ONE, 2018, 13, e0193074.	1.1	51
50	Modeling the Effect of the Selective S1P1 Receptor Modulator Ponesimod on Subsets of Blood Lymphocytes. Pharmaceutical Research, 2017, 34, 599-609.	1.7	11
51	An allometric pharmacokinetic/pharmacodynamics model for BI 893923, a novel IGF-1 receptor inhibitor. Cancer Chemotherapy and Pharmacology, 2017, 79, 545-558.	1.1	4
52	Alternative Treatment Regimens With the PCSK9 Inhibitors Alirocumab and Evolocumab: A Pharmacokinetic and Pharmacodynamic Modeling Approach. Journal of Clinical Pharmacology, 2017, 57, 846-854.	1.0	13
53	Target-Mediated Drug Disposition Pharmacokinetic–Pharmacodynamic Model of Bosentan and Endothelin-1. Clinical Pharmacokinetics, 2017, 56, 1499-1511.	1.6	10
54	A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification. Cancer Chemotherapy and Pharmacology, 2017, 80, 1013-1026.	1.1	20

#	Article	lF	CITATIONS
55	A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth. European Journal of Pharmaceutical Sciences, 2017, 97, 38-46.	1.9	19
56	Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS Journal, 2017, 19, 298-312.	2.2	28
57	Impact of Demographics, Organ Impairment, Disease, Formulation, and Food on the Pharmacokinetics of the Selective S1P1 Receptor Modulator Ponesimod Based on 13 Clinical Studies. Clinical Pharmacokinetics, 2017, 56, 395-408.	1.6	9
58	Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget, 2016, 7, 6088-6104.	0.8	32
59	Safety, tolerability and clinical pharmacology of dabigatran etexilate in adolescents. Thrombosis and Haemostasis, 2016, 116, 461-471.	1.8	29
60	First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. Journal of Hepatology, 2016, 65, 483-489.	1.8	187
61	Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase lb/lla study. Journal of Hepatology, 2016, 65, 490-498.	1.8	321
62	Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology. Toxicology Letters, 2016, 253, 7-16.	0.4	33
63	MDM2 antagonist nutlinâ€3a sensitizes tumors to Vâ€ATPase inhibition. Molecular Oncology, 2016, 10, 1054-1062.	2.1	16
64	Population pharmacokinetics of ponesimod and its primary metabolites in healthy and organ-impaired subjects. European Journal of Pharmaceutical Sciences, 2016, 89, 83-93.	1.9	3
65	A comprehensive pharmacokinetic/pharmacodynamics analysis of the novel IGF1R/INSR inhibitor BI 893923 applying in vitro, in vivo and in silico modeling techniques. Cancer Chemotherapy and Pharmacology, 2016, 77, 1303-1314.	1.1	5
66	Vacuolar-ATPase Inhibition Blocks Iron Metabolism to Mediate Therapeutic Effects in Breast Cancer. Cancer Research, 2015, 75, 2863-2874.	0.4	58
67	Targeting cyclin dependent kinase 5 in hepatocellular carcinoma – A novel therapeutic approach. Journal of Hepatology, 2015, 63, 102-113.	1.8	72
68	The Effect of Dabigatran Plasma Concentrations and Patient Characteristics on the Frequency of Ischemic Stroke and Major Bleeding in Atrial Fibrillation Patients. Journal of the American College of Cardiology, 2014, 63, 321-328.	1.2	733
69	Statistical Comparison of Dissolution Profiles to Predict the Bioequivalence of Extended Release Formulations. AAPS Journal, 2014, 16, 791-801.	2.2	9
70	Pharmacometric Characterization of Dabigatran Hemodialysis. Clinical Pharmacokinetics, 2013, 52, 453-462.	1.6	40
71	Genetic Determinants of Dabigatran Plasma Levels and Their Relation to Bleeding. Circulation, 2013, 127, 1404-1412.	1.6	222
72	Effective elimination of dabigatran by haemodialysis. Thrombosis and Haemostasis, 2013, 109, 596-605.	1.8	184

#	Article	IF	CITATIONS
73	A Semiâ€Physiological Model of Amyloidâ€Î² Biosynthesis and Clearance in Human Cerebrospinal Fluid: A Tool for Alzheimer's Disease Research and Drug Development. Journal of Clinical Pharmacology, 2013, 53, 691-698.	1.0	1
74	A combined pharmacometric analysis of dabigatran etexilate in healthy volunteers and patients with atrial fibrillation or undergoing orthopaedic surgery. Thrombosis and Haemostasis, 2012, 107, 775-785.	1.8	40
75	Dabigatran Etexilate in Atrial Fibrillation Patients With Severe Renal Impairment: Dose Identification Using Pharmacokinetic Modeling and Simulation. Journal of Clinical Pharmacology, 2012, 52, 1373-1378.	1.0	78
76	Twice daily dosing of dabigatran for stroke prevention in atrial fibrillation: a pharmacokinetic justification. Current Medical Research and Opinion, 2012, 28, 195-201.	0.9	32
77	Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with nonâ€valvular atrial fibrillation from the RE‣Y trial: reply to a rebuttal. Journal of Thrombosis and Haemostasis, 2012, 10, 502-504.	1.9	1
78	Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with nonâ€valvular atrial fibrillation from the RE‣Y trial. Journal of Thrombosis and Haemostasis, 2011, 9, 2168-2175.	1.9	271
79	Population pharmacokinetic modelling and simulation of single and multiple dose administration of meloxicam in cats. Journal of Veterinary Pharmacology and Therapeutics, 2010, 33, 277-286.	0.6	24
80	Quantitative Pharmacology Approach in Alzheimer's Disease: Efficacy Modeling of Early Clinical Data to Predict Clinical Outcome of Tesofensine. AAPS Journal, 2010, 12, 117-129.	2.2	8
81	Semi-Mechanistic Population Pharmacokinetic Drug-Drug Interaction Modelling of a Long Half-Life Substrate and Itraconazole. Clinical Pharmacokinetics, 2010, 49, 53-66.	1.6	16
82	Integration of high-throughput genotyping data into pharmacometric analyses using nonlinear mixed effects modeling. Pharmacogenetics and Genomics, 2010, 20, 442-450.	0.7	10
83	A Quantitative Enterohepatic Circulation Model. Clinical Pharmacokinetics, 2009, 48, 529-542.	1.6	31
84	Contribution of the active metabolite M1 to the pharmacological activity of tesofensine <i>in vivo</i> : a pharmacokineticâ€pharmacodynamic modelling approach. British Journal of Pharmacology, 2008, 153, 164-174.	2.7	27
85	Population pharmacokinetic modelling of NS2330 (tesofensine) and its major metabolite in patients with Alzheimer's disease. British Journal of Clinical Pharmacology, 2007, 64, 36-48.	1.1	20