JoaquÃ-n Hortal Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401086/publications.pdf

Version: 2024-02-01

129 papers 8,961 citations

50170 46 h-index 89 g-index

135 all docs 135
docs citations

135 times ranked 10989 citing authors

#	Article	IF	CITATIONS
1	Elevational and seasonal distribution of Scarabaeinae dung beetles (Scarabaeidae: Coleoptera) at Itatiaia National Park (Brazil). International Journal of Tropical Insect Science, 2022, 42, 1579-1592.	0.4	6
2	COVID-19 effective reproduction number dropped during Spain's nationwide dropdown, then spiked at lower-incidence regions. Science of the Total Environment, 2021, 751, 142257.	3.9	35
3	High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecological Indicators, 2021, 121, 107147.	2.6	26
4	Unveiling the drivers of local dung beetle species richness in the Neotropics. Journal of Biogeography, 2021, 48, 861-871.	1.4	11
5	Quantifying shortfalls in the knowledge on Neotropical Auchenipteridae fishes. Fish and Fisheries, 2021, 22, 87-104.	2.7	18
6	Short- and long-term temporal changes in the assemblage structure of Amazonian dung beetles. Oecologia, 2021, 195, 719-736.	0.9	19
7	Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica, 2021, 53, 753-766.	0.8	45
8	Quantitative genetics of extreme insular dwarfing: The case of red deer on Jersey. Journal of Biogeography, 2021, 48, 1720-1730.	1.4	6
9	Knowledge gaps hamper understanding the relationship between fragmentation and biodiversity loss: the case of Atlantic Forest fruit-feeding butterflies. PeerJ, 2021, 9, e11673.	0.9	12
10	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	3.5	7
11	Thermal niche dimensionality could limit species' responses to temperature changes: Insights from dung beetles. Journal of Biogeography, 2021, 48, 3072-3084.	1.4	2
12	Using maps of biogeographical ignorance to reveal the uncertainty in distributional data hidden in species distribution models. Ecography, 2021, 44, 1743-1755.	2.1	20
13	Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29, 26-37.	2.7	17
14	A niche perspective on the range expansion of symbionts. Biological Reviews, 2020, 95, 491-516.	4.7	28
15	Assessing the functional relationship between dung beetle traits and dung removal, burial, and seedling emergence. Ecology, 2020, 101, e03138.	1.5	28
16	Current climate, but also longâ€term climate changes and human impacts, determine the geographic distribution of European mammal diversity. Global Ecology and Biogeography, 2020, 29, 1758-1769.	2.7	21
17	Deconstructing species richness–environment relationships in Neotropical lianas. Journal of Biogeography, 2020, 47, 2168-2180.	1.4	8
18	How reliable are species identifications in biodiversity big data? Evaluating the records of a neotropical fish family in online repositories. Systematics and Biodiversity, 2020, 18, 181-191.	0.5	12

#	Article	IF	Citations
19	Rethinking extinctions that arise from habitat loss. Nature, 2020, 584, 194-196.	13.7	7
20	Assessing spatial and temporal biases and gaps in the publicly available distributional information of Iberian mosses. Biodiversity Data Journal, 2020, 8, e53474.	0.4	11
21	Quantitative genetics of body size evolution on islands: an individual-based simulation approach. Biology Letters, 2019, 15, 20190481.	1.0	12
22	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	2.7	44
23	Pleistocene climate change and the formation of regional species pools. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190291.	1.2	20
24	BtM, a Low-cost Open-source Datalogger to Estimate the Water Content of Nonvascular Cryptogams. Journal of Visualized Experiments, 2019 , , .	0.2	1
25	Drivers of regional and local diversity of Amazonian stream Odonata. Insect Conservation and Diversity, 2019, 12, 251-261.	1.4	17
26	Metacommunity patterns of Amazonian Odonata: the role of environmental gradients and major rivers. PeerJ, 2019, 7, e6472.	0.9	16
27	KnowBR: An application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecological Indicators, 2018, 91, 241-248.	2.6	83
28	Shifts in the importance of the species pool and environmental controls of epiphytic bryophyte richness across multiple scales. Oecologia, 2018, 186, 805-816.	0.9	12
29	Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 2018, 26, 8-23.	1.2	216
30	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	1.2	72
31	Frontiers of Biogeography: taking its place as a journal of choice for the publication of high quality biogeographical research articles. Frontiers of Biogeography, 2018, 10, .	0.8	O
32	Spatial and temporal variations of aridity shape dung beetle assemblages towards the Sahara desert. PeerJ, 2018, 6, e5210.	0.9	9
33	Uneven abundances determine nestedness in climbing plant-host interaction networks. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 26, 53-59.	1.1	8
34	Environmental niche divergence among three dune shrub sister species with parapatric distributions. Annals of Botany, 2017, 119, 1157-1167.	1.4	8
35	A roadmap for island biology: 50 fundamental questions after 50Âyears of <i>The Theory of Island Biogeography</i> . Journal of Biogeography, 2017, 44, 963-983.	1.4	167
36	Temporal degradation of data limits biodiversity research. Ecology and Evolution, 2017, 7, 6863-6870.	0.8	45

#	Article	IF	Citations
37	Trait dynamics of Mediterranean xerophytic shrub communities growing on stabilised inland dunes respond to nutrient and aridity gradients. Plant Ecology and Diversity, 2017, 10, 115-126.	1.0	4
38	Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 2017, 31, 558-567.	1.7	290
39	Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.	1.9	92
40	How the landscape of publishing is changing biogeography. Frontiers of Biogeography, 2017, 9, .	0.8	0
41	Introduction, Establishment, Invasion, Accommodation: innovation and disruption in biogeographic publishing. Frontiers of Biogeography, 2017, 9, .	0.8	O
42	Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biological Invasions, 2016, 18, 3137-3148.	1.2	48
43	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	4.2	79
44	Mapping ignorance: 300 years of collecting flowering plants in Africa. Global Ecology and Biogeography, 2016, 25, 1085-1096.	2.7	85
45	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	1.0	14
46	Geography and major host evolutionary transitions shape the resource use of plant parasites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9840-9845.	3.3	61
47	Glaciations, deciduous forests, water availability and current geographical patterns in the diversity of European <i>Carabus</i> species. Journal of Biogeography, 2016, 43, 2343-2353.	1.4	40
48	New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal, 2016, 4, e10948.	0.4	12
49	Using niche models of indicator species to predict the distribution of xerophytic shrub dune communities. Web Ecology, 2016, 16, 47-49.	0.4	4
50	Epiphytic bryophytes of Quercus forests in Central and North inland Iberian Peninsula. Frontiers of Biogeography, 2015, 7, .	0.8	1
51	Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 523-549.	3.8	856
52	Local and regional-scale factors drive xerophytic shrub community dynamics on Mediterranean stabilized dunes. Plant and Soil, 2015, 391, 413-426.	1.8	5
53	On the need for phylogenetic â€~corrections' in functional trait-based approaches. Folia Geobotanica, 2015, 50, 349-357.	0.4	84
54	Epiphytic bryophytes of Quercus forests in Central and North inland Iberian Peninsula. Frontiers of Biogeography, 2015, 7, .	0.8	5

#	Article	IF	Citations
55	Geographical, Temporal and Environmental Determinants of Bryophyte Species Richness in the Macaronesian Islands. PLoS ONE, 2014, 9, e101786.	1.1	49
56	Perspectives on the use of lakes and ponds as model systems for macroecological research. Journal of Limnology, 2014, 73, .	0.3	33
57	Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography, 2014, 37, 80-93.	2.1	37
58	Information visualisation for science and policy: engaging users and avoiding bias. Trends in Ecology and Evolution, 2014, 29, 148-157.	4.2	95
59	Constraint envelope analyses of macroecological patterns reveal climatic effects on Pleistocene mammal extinctions. Quaternary Research, 2014, 82, 260-269.	1.0	8
60	Climatic niche at physiological and macroecological scales: the thermal tolerance–geographical range interface and niche dimensionality. Global Ecology and Biogeography, 2014, 23, 446-456.	2.7	65
61	Uncertainty associated with survey design in Species Distribution Models. Diversity and Distributions, 2014, 20, 1258-1269.	1.9	91
62	Designing bryophyte surveys for an optimal coverage of diversity gradients. Biodiversity and Conservation, 2013, 22, 3121-3139.	1.2	11
63	How do different dispersal modes shape the species–area relationship? Evidence for betweenâ€group coherence in the <scp>M</scp> acaronesian flora. Global Ecology and Biogeography, 2013, 22, 483-493.	2.7	38
64	Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 2013, 36, 104-113.	2.1	59
65	At least some protist species are not ubiquitous. Molecular Ecology, 2013, 22, 5053-5055.	2.0	22
66	Species richness can decrease with altitude but not with habitat diversity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2149-50.	3.3	64
67	Mapping species distributions: living with uncertainty. Frontiers of Biogeography, 2013, 5, .	0.8	4
68	Mapping species distributions: living with uncertainty. Frontiers of Biogeography, 2013, 5, .	0.8	30
69	Assessing extinction risks under the combined effects of climate change and human disturbance through the analysis of life-history plasticity. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 393-401.	1.1	18
70	workshop summary: The application of species distribution models in the megadiverse Neotropics poses a renewed set of research questions. Frontiers of Biogeography, 2012, 4, .	0.8	0
71	Frontiers of Biogeography, a new frontier for the IBS. Frontiers of Biogeography, 2012, 1, .	0.8	O
72	Resolving the Azorean knot: a response to Carine & Schaefer (2010). Journal of Biogeography, 2012, 39, 1179-1184.	1.4	32

#	Article	lF	Citations
73	Integrating biogeographical processes and local community assembly. Journal of Biogeography, 2012, 39, 627-628.	1.4	30
74	update: Escaping the trap of low sample size in island biogeography. Frontiers of Biogeography, 2012, 3,	0.8	4
75	Basic questions in biogeography and the (lack of) simplicity of species distributions: Putting species distribution models in the right place. Natureza A Conservacao, 2012, 10, 106-116.	2.5	34
76	Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310, 451-463.	1.0	145
77	Geographic variation in the diversity of microbial communities: research directions and prospects for experimental biogeography., 2011,, 335-357.		12
78	Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 2011, 14, 741-748.	3.0	183
79	Species pool structure determines the level of generalism of island parasitoid faunas. Journal of Biogeography, 2011, 38, 1657-1667.	1.4	14
80	Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 2011, 38, 2237-2247.	1.4	75
81	Are island and mainland biotas different? Richness and level of generalism in parasitoids of a microlepidopteran in Macaronesia. Oikos, 2011, 120, 1256-1262.	1.2	17
82	Evidence of Weak Habitat Specialisation in Microscopic Animals. PLoS ONE, 2011, 6, e23969.	1.1	37
83	Can Species Richness Patterns Be Interpolated From a Limited Number of Well-Known Areas? Mapping Diversity Using GLM and Kriging. Natureza A Conservacao, 2011, 9, 200-207.	2.5	11
84	Species richness estimation: Estimator performance and the influence of rare species. Limnology and Oceanography: Methods, 2010, 8, 294-303.	1.0	14
85	Predicted insect diversity declines under climate change in an already impoverished region. Journal of Insect Conservation, 2010, 14, 485-498.	0.8	49
86	The uncertain nature of absences and their importance in species distribution modelling. Ecography, 2010, 33, 103-114.	2.1	490
87	Understanding (insect) species distributions across spatial scales. Ecography, 2010, 33, 51-53.	2.1	158
88	Extinction debt on oceanic islands. Ecography, 2010, 33, 285-294.	2.1	114
89	Assessing the reliability of biodiversity databases: identifying evenly inventoried island parasitoid faunas (Hymenoptera: Ichneumonoidea) worldwide. Insect Conservation and Diversity, 2010, 3, 72-82.	1.4	30
90	Are species–area relationships from entire archipelagos congruent with those of their constituent islands?. Global Ecology and Biogeography, 2010, 19, 527-540.	2.7	46

#	Article	IF	CITATIONS
91	Assessing <i>alpha </i> and <i>beta </i> taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. Journal of Zoological Systematics and Evolutionary Research, 2010, 48, 40-49.	0.6	19
92	Assessing the areas under risk of invasion within islands through potential distribution modelling: The case of Pittosporum undulatum in S $ ilde{A}$ 50 Miguel, Azores. Journal for Nature Conservation, 2010, 18, 247-257.	0.8	46
93	Lost in space? Searching for directions in the spatial modelling of individuals, populations and species ranges. Biology Letters, 2010, 6, 575-578.	1.0	11
94	Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landscape Ecology, 2009, 24, 375-390.	1.9	30
95	Time, area and isolation: factors driving the diversification of Azorean arthropods. Journal of Biogeography, 2009, 36, 178-191.	1.4	93
96	Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography, 2009, 36, 2222-2236.	1.4	69
97	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
98	Testing the effectiveness of discrete and continuous environmental diversity as a surrogate for species diversity. Ecological Indicators, 2009, 9, 138-149.	2.6	25
99	Would species richness estimators change the observed species area relationship?. Acta Oecologica, 2009, 35, 149-156.	0.5	19
100	Island Species Richness Increases with Habitat Diversity. American Naturalist, 2009, 174, E205-E217.	1.0	219
101	The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 2009, 10, 196-205.	0.5	97
102	Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos, 2008, 117, 847-858.	1.2	272
103	Measurements of area and the (island) species–area relationship: new directions for an old pattern. Oikos, 2008, 117, 1555-1559.	1.2	51
104	Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 2008, 14, 885-890.	1.9	501
105	Regional and environmental effects on the species richness of mammal assemblages. Journal of Biogeography, 2008, 35, 1202-1214.	1.4	101
106	Uncertainty and the measurement of terrestrial biodiversity gradients. Journal of Biogeography, 2008, 35, 1335-1336.	1.4	73
107	Challenging Species Distribution Models: The Case of <i>Maculinea nausithous </i> Peninsula. Annales Zoologici Fennici, 2008, 45, 200-210.	0.2	44
108	Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biology, 2008, 6, e79.	2.6	250

#	Article	IF	CITATIONS
109	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	1.5	47
110	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
111	Limitations of Biodiversity Databases: Case Study on Seed-Plant Diversity in Tenerife, Canary Islands. Conservation Biology, 2007, 21, 853-863.	2.4	241
112	Invasive exotic aoudad (<i>Ammotragus lervia</i>) as a major threat to native Iberian ibex (<i>Capra) Tj ETQq0 0</i>	O rgBT /O	verlock 10 Tf
113	How does the knowledge about the spatial distribution of Iberian dung beetle species accumulate over time?. Diversity and Distributions, 2007, 13, 772-780.	1.9	61
114	Which leaf beetles have not yet been described? Determinants of the description of Western Palaearctic Aphthona species (Coleoptera: Chrysomelidae). Biodiversity and Conservation, 2007, 16, 1409-1421.	1,2	21
115	A synecological framework for systematic conservation planning. Biodiversity Informatics, 2006, 3, .	3.0	30
116	Prospects for population expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the Iberian Peninsula: clues from habitat suitability modelling. Diversity and Distributions, 2006, 12, 666-678.	1.9	33
117	Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology, 2006, 75, 274-287.	1.3	418
118	An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. Journal of Biogeography, 2006, 33, 291-303.	1.4	30
119	Regional and local influence of grazing activity on the diversity of a semi-arid dung beetle community. Diversity and Distributions, 2006, 12, 111-123.	1.9	60
120	Historical Determinants of Mammal Diversity in Africa: Evolution of Mammalian Body Mass Distribution in Africa and South America During Neogene and Quarternary Times., 2005,, 287-295.		8
121	Evaluating the roles of connectivity and environment on faunal turnover: patterns in recent and fossil lberian mammals., 2005,, 301-327.		2
122	An ED-based Protocol for Optimal Sampling of Biodiversity. Biodiversity and Conservation, 2005, 14, 2913-2947.	1.2	140
123	Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation, 2005, 122, 327-338.	1.9	134
124	Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns. Ecography, 2004, 27, 68-82.	2.1	85
125	Title is missing!. Biodiversity and Conservation, 2001, 10, 1343-1367.	1.2	56

Dung Beetle Geographic Diversity Variation Along a Western Iberian Latitudinal Transect (Coleoptera:) Tj ETQq0 0 Q $_{1.9}^{\circ}$ BT /Overlock 10 T $_{1.9}^{\circ}$

126

#	Article	IF	CITATIONS
127	New light on the baseline importance of temperature for the origin of geographic species richness gradients. Peer Community in Ecology, 0 , , .	0.0	0
128	Understanding the interplay between host-specificity, environmental conditions and competition through the sound application of Joint Species Distribution Models. Peer Community in Ecology, 0, , .	0.0	0
129	A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0 , , .	0.0	0