Pushpinder Singh Bawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6400851/publications.pdf

Version: 2024-02-01

19 papers 593 citations

8 h-index 940533 16 g-index

20 all docs

20 docs citations

times ranked

20

1016 citing authors

#	Article	IF	CITATIONS
1	A transcriptomic model for homologous recombination deficiency in prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 659-665.	3.9	9
2	Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature, 2022, 601, 434-439.	27.8	110
3	Targeting transcriptional regulation of SARS-CoV-2 entry factors <i>ACE2</i> and <i>TMPRSS2</i> Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	142
4	TSLP-Driven Chromatin Remodeling and Trained Systemic Immunity after Neonatal Respiratory Viral Infection. Journal of Immunology, 2021, 206, 1315-1328.	0.8	12
5	MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Reports, 2021, 36, 109390.	6.4	19
6	MP60-02â€∱TRANSCRIPTOMICS CAN PREDICT HOMOLOGOUS RECOMBINATION DEFICIENCY IN PROSTATE CANCER. Journal of Urology, 2021, 206, .	0.4	0
7	Multidimensional Mutational Profiling of the Indian HNSCC Sub-Population Provides IRAK1, a Novel Driver Gene and Potential Druggable Target. Frontiers in Oncology, 2021, 11, 723162.	2.8	7
8	Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22, 111-119.	5.3	101
9	Multivalent Proteins Rapidly and Reversibly Phase-Separate upon Osmotic Cell Volume Change. Molecular Cell, 2020, 79, 978-990.e5.	9.7	86
10	Polypoidal giant cancer cells in metastatic castration-resistant prostate cancer: observations from the Michigan Legacy Tissue Program. Medical Oncology, 2020, 37, 16.	2.5	13
11	Abstract 5679: Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. , 2020, , .		O
12	hg19KIndel: ethnicity normalized human reference genome. BMC Genomics, 2019, 20, 459.	2.8	11
13	Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA Biology, 2019, 16, 754-769.	3.1	7
14	A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget, 2018, 9, 32419-32434.	1.8	5
15	hg19K: addressing a significant lacuna in hg19-based variant calling. Molecular Genetics & amp; Genomic Medicine, 2017, 5, 15-20.	1.2	5
16	Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS ONE, 2017, 12, e0188159.	2.5	18
17	The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression. Journal of Biological Chemistry, 2016, 291, 27387-27402.	3.4	8
18	Integrative Analysis of Normal Long Intergenic Non-Coding RNAs in Prostate Cancer. PLoS ONE, 2015, 10, e0122143.	2.5	38

#	Article	IF	CITATIONS
19	Whole-exome sequencing of Indian prostate cancer reveals a novel therapeutic target: POLQ. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	2