
## Salvatore Papa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6400535/publications.pdf Version: 2024-02-01



SALVATORE DADA

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Editorial: The Dynamic Interplay Between Nutrition, Autophagy and Cell Metabolism. Frontiers in Cell<br>and Developmental Biology, 2021, 9, 684049.                        | 3.7  | 0         |
| 2  | Targeting myosin 1c inhibits murine hepatic fibrogenesis. American Journal of Physiology - Renal<br>Physiology, 2021, 320, G1044-G1053.                                    | 3.4  | 5         |
| 3  | Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth.<br>Hepatology, 2021, 74, 2561-2579.                                       | 7.3  | 13        |
| 4  | STARD1: a new rising StAR in cholesterol-mediated hepatocarcinogenesis. Hepatobiliary Surgery and Nutrition, 2021, 10, 910-912.                                            | 1.5  | 0         |
| 5  | ASKing No More: The Emerging Role of Dualâ€5pecific Phosphatase 12 in the Regulation of Hepatic Lipid<br>Metabolism. Hepatology, 2019, 70, 1091-1094.                      | 7.3  | 2         |
| 6  | Editorial: The Warburg Effect Regulation Under Siege: the Intertwined Pathways in Health and Disease.<br>Frontiers in Cell and Developmental Biology, 2019, 7, 80.         | 3.7  | 13        |
| 7  | The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38, 2223-2240.                                                                      | 5.9  | 244       |
| 8  | GADD45Î <sup>2</sup> Loss Ablates Innate Immunosuppression in Cancer. Cancer Research, 2018, 78, 1275-1292.                                                                | 0.9  | 33        |
| 9  | Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment. Cancer<br>Letters, 2018, 419, 175-186.                                             | 7.2  | 21        |
| 10 | High Expression of Glycolytic Genes in Cirrhosis Correlates With the Risk of Developing Liver Cancer.<br>Frontiers in Cell and Developmental Biology, 2018, 6, 138.        | 3.7  | 56        |
| 11 | Feeding the Hedgehog: A new meaning for JNK signalling in liver regeneration. Journal of Hepatology,<br>2018, 69, 572-574.                                                 | 3.7  | 3         |
| 12 | Linking apoptosis to cancer metabolism: Another missing piece of JuNK. Molecular and Cellular<br>Oncology, 2016, 3, e1103398.                                              | 0.7  | 9         |
| 13 | P0315 : Increased aerobic glycolysis is associated with poor outcome and suppression of apoptosis in human liver cirrhosis and HCC. Journal of Hepatology, 2015, 62, S427. | 3.7  | 1         |
| 14 | OC-022ÂAddressing the interplay between apoptosis and glucose metabolism in liver cirrhosis and HCC.<br>Gut, 2015, 64, A12.1-A12.                                          | 12.1 | 0         |
| 15 | PTH-115ÂInhibition of mapk signalling promotes cell cycle arrest and sensitises intrahepatic cholangiocarcinoma cells to chemotherapy. Gut, 2015, 64, A458.2-A459.         | 12.1 | 0         |
| 16 | PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nature Communications, 2015, 6, 7882.     | 12.8 | 177       |
| 17 | Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice.<br>Gut, 2015, 64, 1120-1131.                                             | 12.1 | 81        |
| 18 | <scp>JNK</scp> signalling in cancer: in need of new, smarter therapeutic targets. British Journal of<br>Pharmacology, 2014, 171, 24-37.                                    | 5.4  | 292       |

SALVATORE PAPA

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | P612 OSTEOPONTIN NEUTRALIZATION ABROGATES THE LIVER PROGENITOR CELL RESPONSE AND FIBROGENIC OUTCOMES IN MICE. Journal of Hepatology, 2014, 60, S273.                                                                                                            | 3.7  | 0         |
| 20 | P68 UPREGULATION OF A NOVEL PROTEIN IN HCC ENHANCES CANCER CELL SURVIVAL BY SUPPRESSING SPECIFIC APOPTOTIC EFFECTORS. Journal of Hepatology, 2014, 60, S89.                                                                                                     | 3.7  | 0         |
| 21 | Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene, 2013, 32, 4231-4242.                                                                                         | 5.9  | 104       |
| 22 | 283 MIXED-PHENOTYPE HEPATOCELLULAR CARCINOMA IN LIVER TRANSPLANTS AFTER USE OF TRANSARTERIAL<br>CHEMOEMBOLIZATION (TACE) IS ASSOCIATED WITH ACTIVATION OF MITOGEN-ACTIVATED PROTEIN KINASE<br>(MAPK) SIGNALLING PATHWAY. Journal of Hepatology, 2012, 56, S117. | 3.7  | 0         |
| 23 | PWE-291â€MAPK signalling regulates the development of a cholangiocellular phenotype from HCC in post-TACE liver transplants. Gut, 2012, 61, A416.2-A416.                                                                                                        | 12.1 | 0         |
| 24 | Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways. Biological Chemistry, 2009,<br>390, 965-976.                                                                                                                                        | 2.5  | 128       |
| 25 | Growth arrest and DNA damage protein 45b (Gadd45b) protects retinal ganglion cells from injuries.<br>Neurobiology of Disease, 2009, 33, 104-110.                                                                                                                | 4.4  | 26        |
| 26 | Gadd45β deficiency in rheumatoid arthritis: Enhanced synovitis through JNK signaling. Arthritis and Rheumatism, 2009, 60, 3229-3240.                                                                                                                            | 6.7  | 28        |
| 27 | T Cell-Derived Lymphotoxin Regulates Liver Regeneration. Gastroenterology, 2009, 136, 694-704.e4.                                                                                                                                                               | 1.3  | 66        |
| 28 | Gadd45β dimerization does not affect MKK7 binding. Advances in Experimental Medicine and Biology, 2009, 611, 367-368.                                                                                                                                           | 1.6  | 1         |
| 29 | The NF-κB Transcription Factor Pathway as a Therapeutic Target in Cancer: Methods for Detection of NF-κB Activity. Methods in Molecular Biology, 2009, 512, 169-207.                                                                                            | 0.9  | 42        |
| 30 | Gadd45β forms a Homodimeric Complex that Binds Tightly to MKK7. Journal of Molecular Biology, 2008, 378, 97-111.                                                                                                                                                | 4.2  | 49        |
| 31 | Gadd45β promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling.<br>Journal of Clinical Investigation, 2008, 118, 1911-1923.                                                                                                 | 8.2  | 85        |
| 32 | Upregulation of Twist-1 by NF-κB Blocks Cytotoxicity Induced by Chemotherapeutic Drugs. Molecular<br>and Cellular Biology, 2007, 27, 3920-3935.                                                                                                                 | 2.3  | 133       |
| 33 | Insights into the Structural Basis of the GADD45β-mediated Inactivation of the JNK Kinase, MKK7/JNKK2.<br>Journal of Biological Chemistry, 2007, 282, 19029-19041.                                                                                              | 3.4  | 66        |
| 34 | Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death and Differentiation, 2007, 14, 240-253.                                                                                                                                 | 11.2 | 103       |
| 35 | A Method for Isolating Prosurvival Targets of NF-κB/Rel Transcription Factors. Methods in Molecular<br>Biology, 2007, 399, 99-124.                                                                                                                              | 0.9  | 5         |
| 36 | The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and differentiation, 2006, 13, 712-729.                                                                                                                      | 11.2 | 234       |

SALVATORE PAPA

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene, 2006, 25, 6731-6748.                                                                                   | 5.9  | 371       |
| 38 | Growth arrest- and DNA-damage-inducible 45β gene inhibits c-Jun N-terminal kinase and extracellular<br>signal-regulated kinase and decreases IL-1β-induced apoptosis in insulin-producing INS-1E cells.<br>Diabetologia, 2006, 49, 980-989. | 6.3  | 40        |
| 39 | NF-κB-Dependent Regulation of the Timing of Activation-Induced Cell Death of T Lymphocytes. Journal of<br>Immunology, 2006, 176, 2183-2189.                                                                                                 | 0.8  | 36        |
| 40 | The NF-kappaB-mediated control of ROS and JNK signaling. Histology and Histopathology, 2006, 21, 69-80.                                                                                                                                     | 0.7  | 142       |
| 41 | NF-κB meets ROS: an â€~iron-ic' encounter. Cell Death and Differentiation, 2005, 12, 1259-1262.                                                                                                                                             | 11.2 | 22        |
| 42 | In the Crosshairs: NF-κB Targets the JNK Signaling Cascade. Current Medicinal Chemistry<br>Anti-inflammatory & Anti-allergy Agents, 2005, 4, 569-576.                                                                                       | 0.4  | 1         |
| 43 | Oxygen JNKies: Phosphatases Overdose on ROS. Developmental Cell, 2005, 8, 452-454.                                                                                                                                                          | 7.0  | 15        |
| 44 | NF-κB and JNK: An Intricate Affair. Cell Cycle, 2004, 3, 1524-1529.                                                                                                                                                                         | 2.6  | 101       |
| 45 | Linking JNK signaling to NF-κB: a key to survival. Journal of Cell Science, 2004, 117, 5197-5208.                                                                                                                                           | 2.0  | 254       |
| 46 | Gadd45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/JNKK2. Nature Cell Biology, 2004, 6, 146-153.                                                                                                                    | 10.3 | 318       |
| 47 | Ferritin Heavy Chain Upregulation by NF-κB Inhibits TNFα-Induced Apoptosis by Suppressing Reactive<br>Oxygen Species. Cell, 2004, 119, 529-542.                                                                                             | 28.9 | 589       |
| 48 | JNK: a killer on a transcriptional leash. Cell Death and Differentiation, 2003, 10, 13-15.                                                                                                                                                  | 11.2 | 45        |
| 49 | Cell survival and a Gadd45-factor deficiency. Nature, 2003, 424, 742-742.                                                                                                                                                                   | 27.8 | 4         |
| 50 | Gadd45β mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood, 2003, 102, 3270-3279.                                                                                                                   | 1.4  | 81        |
| 51 | Regulation of thegadd45βPromoter by NF-κB. DNA and Cell Biology, 2002, 21, 491-503.                                                                                                                                                         | 1.9  | 70        |
| 52 | Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature, 2001, 414, 308-313.                                                                                                                                       | 27.8 | 714       |