Pierre Lecante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639988/publications.pdf

Version: 2024-02-01

159 papers 5,762 citations

38 h-index 70 g-index

163 all docs

 $\begin{array}{c} 163 \\ \text{docs citations} \end{array}$

163 times ranked 6641 citing authors

#	Article	IF	CITATIONS
1	Synthesis of NiFeOx nanocatalysts from metal–organic precursors for the oxygen evolution reaction. Dalton Transactions, 2022, 51, 11457-11466.	1.6	3
2	Spray-drying-derived amorphous calcium phosphate: a multi-scale characterization. Journal of Materials Science, 2021, 56, 1189-1202.	1.7	7
3	Oxidation of methane to methanol over $Pd@Pt$ nanoparticles under mild conditions in water. Catalysis Science and Technology, 2021, 11, 3493-3500.	2.1	23
4	Bimetallic RuNi nanoparticles as catalysts for upgrading biomass: metal dilution and solvent effects on selectivity shifts. Green Chemistry, 2021, 23, 8480-8500.	4.6	9
5	Correlation between surface chemistry and magnetism in iron nanoparticles. Nanoscale Advances, 2021, 3, 4471-4481.	2.2	3
6	Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 53829-53840.	4.0	4
7	Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catalysis Science and Technology, 2020, 10, 342-350.	2.1	17
8	Chemoselective H/D exchange catalyzed by nickel nanoparticles stabilized by N-heterocyclic carbene ligands. Nanoscale, 2020, 12, 15736-15742.	2.8	14
9	2D and 3D Ruthenium Nanoparticle Covalent Assemblies for Phenyl Acetylene Hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020, 4069-4082.	1.0	2
10	Catalysis to discriminate single atoms from subnanometric ruthenium particles in ultra-high loading catalysts. Catalysis Science and Technology, 2020, 10, 4673-4683.	2.1	18
11	When organophosphorus ruthenium complexes covalently bind to ruthenium nanoparticles to form nanoscale hybrid materials. Chemical Communications, 2020, 56, 4059-4062.	2.2	3
12	3D Ruthenium Nanoparticle Covalent Assemblies from Polymantane Ligands for Confined Catalysis. Chemistry of Materials, 2020, 32, 2365-2378.	3.2	11
13	Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution. Nanoscale, 2019, 11, 16544-16552.	2.8	16
14	Alloyed Pt ₃ M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction. Beilstein Journal of Nanotechnology, 2019, 10, 1251-1269.	1.5	6
15	Band Gap Engineering from Cation Balance: The Case of Lanthanide Oxysulfide Nanoparticles. Chemistry of Materials, 2019, 31, 5014-5023.	3.2	17
16	Deciphering the Crystal Structure of a Scarce 1D Polymeric Thorium Peroxo Sulfate. Chemistry - A European Journal, 2019, 25, 9580-9585.	1.7	7
17	Rhodium nanoparticles stabilized by ferrocenyl-phosphine ligands: synthesis and catalytic styrene hydrogenation. Dalton Transactions, 2019, 48, 6777-6786.	1.6	12
18	Ruthenium Trichloride Catalyst in Water: Ru Colloids versus Ru Dimer Characterization Investigations. Inorganic Chemistry, 2019, 58, 4141-4151.	1.9	16

#	Article	IF	CITATIONS
19	Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid. Nanoscale, 2019, 11, 9392-9409.	2.8	19
20	Chemoselective reduction of quinoline over Rh–C ₆₀ nanocatalysts. Catalysis Science and Technology, 2019, 9, 6884-6898.	2.1	16
21	Controlling the Sulfidation Process of Iron Nanoparticles: Accessing Ironâ^ʾIron Sulfide Coreâ€ 5 hell Structures. ChemNanoMat, 2018, 4, 663-669.	1.5	5
22	Mixing Time between Organometallic Precursor and Ligand: A Key Parameter Controlling ZnO Nanoparticle Size and Shape and Processable Hybrid Materials. Chemistry of Materials, 2018, 30, 8959-8967.	3.2	14
23	Ligand-Capped Ru Nanoparticles as Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 11094-11102.	5.5	70
24	Ultrathin Gold Nanowires with the Polytetrahedral Structure of Bulk Manganese. ACS Nano, 2018, 12, 9521-9531.	7.3	21
25	Magnetic, Structural, and Chemical Properties of Cobalt Nanoparticles Synthesized in Ionic Liquids. Langmuir, 2018, 34, 7086-7095.	1.6	15
26	Palladium-mediated radical homocoupling reactions: a surface catalytic insight. Catalysis Science and Technology, 2018, 8, 4766-4773.	2.1	14
27	Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials Today Energy, 2018, 9, 506-515.	2.5	11
28	Mechanistic Investigations of the Synthesis of Size‶unable Ni Nanoparticles by Reduction of Simple Ni ^{Diamide Precursors. Chemistry - A European Journal, 2017, 23, 9352-9361.}	1.7	2
29	Insights into the chemistry of bismuth nanoparticles. New Journal of Chemistry, 2017, 41, 5960-5966.	1.4	5
30	Hexakis [60]Fullerene Adductâ€Mediated Covalent Assembly of Ruthenium Nanoparticles and Their Catalytic Properties. Chemistry - A European Journal, 2017, 23, 13379-13386.	1.7	22
31	Control of reactivity through chemical order in very small RuRe nanoparticles. Dalton Transactions, 2017, 46, 15070-15079.	1.6	8
32	Dissimilar catalytic behavior of molecular or colloidal palladium systems with a new NHC ligand. Dalton Transactions, 2017, 46, 11768-11778.	1.6	9
33	Exotic structures and morphology control in nanomaterials: PDF insights. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C886-C886.	0.0	0
34	Controlled and Chemoselective Hydrogenation of Nitrobenzene over Ru@C ₆₀ Catalysts. ACS Catalysis, 2016, 6, 6018-6024.	5.5	95
35	Synthesis and structure of ruthenium-fullerides. RSC Advances, 2016, 6, 69135-69148.	1.7	22
36	Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule. Dalton Transactions, 2016, 45, 17782-17791.	1.6	18

3

#	Article	IF	Citations
37	Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chemical Communications, 2016, 52, 4768-4771.	2.2	63
38	Improved Transversal Relaxivity for Highly Crystalline Nanoparticles of Pure γâ€Fe ₂ O ₃ Phase. Chemistry - A European Journal, 2015, 21, 18855-18861.	1.7	12
39	TiC-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis. Materials for Renewable and Sustainable Energy, 2015, 4, 17.	1.5	6
40	Facile One-Pot Synthesis of Rhenium Nanoparticles. Materials Research Society Symposia Proceedings, 2014, 1675, 157-162.	0.1	1
41	Surface Chemistry on Small Ruthenium Nanoparticles: Evidence for Site Selective Reactions and Influence of Ligands. Chemistry - A European Journal, 2014, 20, 1287-1297.	1.7	50
42	How to Modulate Catalytic Properties in Nanosystems: The Case of Iron–Ruthenium Nanoparticles. ChemCatChem, 2014, 6, 1714-1720.	1.8	16
43	Seed-mediated synthesis of bimetallic ruthenium–platinum nanoparticles efficient in cinnamaldehyde selective hydrogenation. Dalton Transactions, 2014, 43, 9283-9295.	1.6	22
44	Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction. Nanoscale, 2014, 6, 9806-9816.	2.8	24
45	Probing the surface of platinum nanoparticles with 13CO by solid-state NMR and IR spectroscopies. Nanoscale, 2014, 6, 539-546.	2.8	27
46	Facile synthesis of ultra-small rhenium nanoparticles. Chemical Communications, 2014, 50, 10809.	2.2	26
47	Studies on SnCl2-doped TiO2 photocatalyst for Pyrocatechol Photodegradation. Engineering Journal, 2014, 18, 11-22.	0.5	4
48	Palladium catalytic systems with hybrid pyrazole ligands in C–C coupling reactions. Nanoparticles versus molecular complexes. Catalysis Science and Technology, 2013, 3, 475-489.	2.1	27
49	Efficient Ruthenium Nanocatalysts in Liquid–Liquid Biphasic Hydrogenation Catalysis: Towards a Supramolecular Control through a Sulfonated Diphosphine–Cyclodextrin Smart Combination. ChemCatChem, 2013, 5, 3802-3811.	1.8	29
50	On the Use of Amine–Borane Complexes To Synthesize Iron Nanoparticles. Chemistry - A European Journal, 2013, 19, 6021-6026.	1.7	10
51	Formation of Bimetallic FeBi Nanostructured Particles: Investigation of a Complex Growth Mechanism. Journal of Physical Chemistry C, 2013, 117, 1477-1484.	1.5	9
52	On the influence of diphosphine ligands on the chemical order in small RuPt nanoparticles: combined structural and surface reactivity studies. Dalton Transactions, 2013, 42, 372-382.	1.6	23
53	Development of Bi-Metallic Fe—Bi Nanocomposites: Synthesis and Characterization. Journal of Nanoscience and Nanotechnology, 2012, 12, 8640-8646.	0.9	4
54	Segregation at a small scale: synthesis of coreâ€"shell bimetallic RuPt nanoparticles, characterization and solid state NMR studies. Journal of Materials Chemistry, 2012, 22, 3578.	6.7	34

#	Article	IF	CITATIONS
55	The Big Impact of a Small Detail: Cobalt Nanocrystal Polymorphism as a Result of Precursor Addition Rate during Stock Solution Preparation. Journal of the American Chemical Society, 2012, 134, 17922-17931.	6.6	62
56	Multi-site coordination N-phosphanylamidine ligands as stabilizers for the synthesis of ruthenium nanoparticles. New Journal of Chemistry, 2011, 35, 2653.	1.4	15
57	One-step synthesis of metallic and metal oxidenanoparticles using amino-PEG oligomers as multi-purpose ligands: size and shape control, and quasi-universal solvent dispersibility. Chemical Communications, 2011, 47, 988-990.	2.2	21
58	Structural characterizations of As–Se–Te glasses. Journal of Alloys and Compounds, 2011, 509, 831-836.	2.8	29
59	Study of the role of the ligands coordinated at the surface of pure WÃ⅓stite nanoparticles prepared following a room temperature organometallic method: Evidence of ferromagnetic – in shell- and antiferromagnetic – in core magnetic behaviors. Materials Chemistry and Physics, 2011, 129, 605-610.	2.0	8
60	Influence of particles alloying on the performances of Pt–Ru/CNT catalysts for selective hydrogenation. Journal of Catalysis, 2011, 278, 59-70.	3.1	84
61	Photomodulation of the Magnetisation of Co Nanocrystals Decorated with Rhodamine B. ChemPhysChem, 2011, 12, 2915-2919.	1.0	2
62	Organometallic Synthesis of βâ€CoAl Nanoparticles and βâ€CoAl/Al Nanoparticles and Their Behaviour upon Air Exposure. European Journal of Inorganic Chemistry, 2010, 2010, 1599-1603.	1.0	15
63	Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism. Beilstein Journal of Nanotechnology, 2010, 1, 108-118.	1.5	31
64	XANES and XMCD studies of FeRh and CoRh nanoparticles. Journal of Physics: Conference Series, 2010, 200, 072091.	0.3	2
65	Design of New N,O Hybrid Pyrazole Derived Ligands and Their Use as Stabilizers for the Synthesis of Pd Nanoparticles. Langmuir, 2010, 26, 15532-15540.	1.6	24
66	Organometallic control at the nanoscale: a new, one-pot method to decorate a magnetic nanoparticle surface with noble metal atoms. Chemical Communications, 2010, 46, 2453.	2.2	21
67	Gadoliniumâ^'Europium Carbonate Particles: Controlled Precipitation for Luminescent Biolabeling. Chemistry of Materials, 2010, 22, 6153-6161.	3.2	71
68	Synthesis of composite ruthenium-containing silica nanomaterials from amine-stabilized ruthenium nanoparticles as elemental bricks. Journal of Materials Chemistry, 2010, 20, 9523.	6.7	13
69	Structural and magnetic study of the annealing of Fe–Co nanoparticles. Journal of Materials Chemistry, 2010, 20, 103-109.	6.7	20
70	Akaganeite polymer nanocomposites. Polymer, 2009, 50, 1088-1094.	1.8	25
71	FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 2009, 19, 3268.	6.7	29
72	Self-assembled platinum nanoparticles into heavily fluorinated templates: reactive gas effect on the morphology. New Journal of Chemistry, 2009, 33, 1529.	1.4	11

#	Article	IF	Citations
73	Fe _{1â^'y} O Nanoparticles: Organometallic Synthesis and Magnetic Properties. ChemPhysChem, 2008, 9, 776-780.	1.0	29
74	An Organometallic Approach for Very Small Maghemite Nanoparticles: Synthesis, Characterization, and Magnetic Properties. ChemPhysChem, 2008, 9, 2035-2041.	1.0	28
75	Chiral Diphosphiteâ€Modified Rhodium(0) Nanoparticles: Catalyst Reservoir for Styrene Hydroformylation. European Journal of Inorganic Chemistry, 2008, 2008, 3460-3466.	1.0	54
76	Electro-precipitation of Fe3O4 nanoparticles in ethanol. Journal of Magnetism and Magnetic Materials, 2008, 320, 2311-2315.	1.0	73
77	Electrochemical synthesis of cobalt nickel nanowires in an ethanol–water bath. Materials Letters, 2008, 62, 2106-2109.	1.3	11
78	Ultrasmall iron nanoparticles: Effect of size reduction on anisotropy and magnetization. Journal of Applied Physics, 2008, 103, .	1,1	55
79	X-Ray Magnetic Circular Dichroism Studies of FeRh Nanoparticles. IEEE Transactions on Magnetics, 2008, 44, 2776-2779.	1.2	14
80	Formation of nanocomposites of platinum nanoparticles embedded into heavily fluorinated aniline and displaying long range organization. Journal of Materials Chemistry, 2008, 18, 660-666.	6.7	13
81	Magnetic properties of Co _N Rh _M nanoparticles: experiment and theory. Faraday Discussions, 2008, 138, 181-192.	1.6	24
82	SYNTHESIS AND CHARACTERIZATION OF FeRh NANOPARTICLES. Modern Physics Letters B, 2007, 21, 1153-1159.	1.0	5
83	Size Dependent Enhancement of Spin and Orbital Magnetism in CoRh Nanoparticles. Materials Research Society Symposia Proceedings, 2007, 998, 1.	0.1	0
84	Catalytic evidence of the core/shell structure of bimetallic Pd/Rh colloids. New Journal of Chemistry, 2007, 31, 218-223.	1.4	12
85	One-Pot Synthesis of Coreâ^'Shell FeRh Nanoparticles. Chemistry of Materials, 2007, 19, 4624-4626.	3.2	46
86	Shape Control of Platinum Nanoparticles. Advanced Functional Materials, 2007, 17, 2219-2228.	7.8	138
87	NiFe Nanoparticles: A Soft Magnetic Material?. Small, 2007, 3, 451-458.	5. 2	56
88	Structure and chemical order in Co–Rh nanoparticles. Europhysics Letters, 2006, 73, 885-891.	0.7	44
89	Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New Journal of Chemistry, 2006, 30, 115-122.	1.4	111
90	Synthesis of Ruthenium Nanoparticles Stabilized by Heavily Fluorinated Compounds. Advanced Functional Materials, 2006, 16, 2008-2015.	7.8	28

#	Article	IF	CITATIONS
91	Magnetic polymer nanocomposites. , 2006, , 440-484.		3
92	Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 2005, 4, 750-753.	13.3	262
93	The solid-state synthesis of metal nanoparticles from organometallic precursors. Journal of Colloid and Interface Science, 2005, 287, 107-113.	5.0	28
94	Chemical Control of Structural and Magnetic Properties of Cobalt Nanoparticles. Chemistry of Materials, 2005, 17, 107-111.	3.2	66
95	Synthesis of iron nanoparticles: Size effects, shape control and organisation. Progress in Solid State Chemistry, 2005, 33, 71-79.	3.9	55
96	Structural study of bimetallicCoxRh1 \hat{a} 2xnanoparticles: Size and composition effects. Physical Review B, 2004, 69, .	1.1	19
97	Hydrothermal synthesis of LaMnO3+l̂: F.T.I.R. and W.A.X.S. investigations of the evolution from amorphous to crystallized powder. Journal of Materials Science, 2004, 39, 2821-2826.	1.7	29
98	Influence of organic ligands on the stabilization of palladium nanoparticles. Journal of Organometallic Chemistry, 2004, 689, 4601-4610.	0.8	174
99	Bimetallic CoRh and CoRu nanoparticles: size-induced enhanced magnetisation. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1536-1538.	1.0	11
100	Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures. Faraday Discussions, 2004, 125, 265.	1.6	38
101	Pt Nanoparticles Dispersed in a Mesostrucured Silica Matrix: Towards Self-Organized 3D Nanocomposite. ChemPhysChem, 2003, 4, 514-517.	1.0	5
102	Novel super-structures resulting from the coordination of chiral oxazolines on platinum nanoparticles. New Journal of Chemistry, 2003, 27, 114-120.	1.4	40
103	Synthesis and Magnetism of CoxRh1-xand CoxRu1-xNanoparticles. Journal of Physical Chemistry B, 2003, 107, 6997-7005.	1.2	38
104	Palladium colloids from an organometallic route: redox reaction between [VCp2] and		

#	Article	IF	Citations
109	Magnetic Enhancement in Nanoscale CoRh Particles. Physical Review Letters, 2002, 89, 037203.	2.9	163
110	Synthesis and magnetic properties of nanoscale bimetallic Co1Rh1particles. New Journal of Physics, 2002, 4, 77-77.	1.2	7
111	Synthesis and characterization of sub-micron size Co–Ni alloys using malonate as precursor. Materials Research Bulletin, 2002, 37, 353-363.	2.7	42
112	Structural and magnetic study of bimetallic Co1 \hat{a} °xRhx particles. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 610-612.	1.0	12
113	Caractérisation de nano-colloïdes bimétalliques Pd-Sn par techniques de rayons X et sondes \tilde{A} ©lectroniques. European Physical Journal Special Topics, 2002, 12, 481-486.	0.2	0
114	Ligand-Stabilized Ruthenium Nanoparticles:Â Synthesis, Organization, and Dynamics. Journal of the American Chemical Society, 2001, 123, 7584-7593.	6.6	336
115	Modelling studies of amorphous In–Se films. Journal of Alloys and Compounds, 2001, 328, 214-217.	2.8	13
116	H2-induced structural evolution in non-crystalline rhodium nanoparticles. New Journal of Chemistry, 2001, 25, 525-527.	1.4	39
117	Synthesis and Self-Assembly of Monodisperse Indium Nanoparticles Prepared from the Organometallic Precursor [In(Î-5-C5H5)]. Angewandte Chemie - International Edition, 2001, 40, 448-451.	7.2	101
118	Structural and photo-induced magnetic properties of MII2[WIV(CN)8] \hat{A} -xH2O (M=Fe and x=8, Cu and x=5). Comparison with Cull2[MoIV(CN)8] \hat{A} -7.5H2O. Inorganica Chimica Acta, 2001, 326, 27-36.	1.2	71
119	Size and Composition Effects in the Structure and Properties of Polymer-Protected Bimetallic Particles. Materials Research Society Symposia Proceedings, 2001, 704, 1081.	0.1	0
120	Size and composition effects in polymer-protected ultrafine bimetallicPtxRu1 \hat{a} 'x(0 <x<1)particles. .<="" 2001,="" 63,="" b,="" physical="" review="" td=""><td>1.1</td><td>35</td></x<1)particles.>	1.1	35
121	Short range ordering in amorphous In-Se films by wide-angle X-ray scattering. Journal of Materials Science, 2000, 35, 3121-3126.	1.7	16
122	Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymersâ€"From a polytetrahedral arrangement to the hexagonal structure. Journal of Chemical Physics, 2000, 112, 8137-8145.	1.2	74
123	Gold nanoparticles from self-assembled gold(i) amine precursors. Chemical Communications, 2000, , 1945-1946.	2.2	98
124	Structural Studies and Magnetic Properties of Polymeric Ladder-Type Compounds $\{Ln2[Ni(opba)]3\}\hat{A}\cdot S$ (Ln = Lanthanide Element; opba =0-Phenylenebis(oxamato), S = Solvent Molecules). Chemistry of Materials, 2000, 12, 3073-3079.	3.2	77
125	Nanoscale Bimetallic CoxPt1-x Particles Dispersed in Poly(vinylpyrrolidone): Synthesis from Organometallic Precursors and Characterization. Journal of Physical Chemistry B, 2000, 104, 695-702.	1.2	133
126	Synthesis and Characterization of CoO, Co3O4, and Mixed Co/CoO Nanoparticules. Chemistry of Materials, 1999, 11, 2702-2708.	3.2	162

#	Article	IF	CITATIONS
127	Synthesis and Structural Study by Wide-Angle X-ray Scattering (WAXS) of Polymeric {Ln2[M(opba)]3}·S Compounds Containing 4f LnIII and 3d MII {Ln2[M(opba)]3}·S Ions [opba =ortho-Phenylenebis(oxamato), S = Solvent Molecules]. European Journal of Inorganic Chemistry, 1999, 1999, 527-531.	1.0	33
128	A New Synthetic Method toward Bimetallic Ruthenium Platinum Nanoparticles; Composition Induced Structural Changes. Journal of Physical Chemistry B, 1999, 103, 10098-10101.	1.2	125
129	Spectroscopic Determination of Magnetic Exchange Parameters and Structural Geometry for Trinuclear Compounds:  (CuL)2Mn·xB (L = N-(4-Methyl-6-oxo-3-azahept-4-enyl)oxamato and B = (CH3)2SO)	T j. தாQq1	1 : 0.784314
130	Surfactant effects in vanadium alkoxide derived gels. Journal of Non-Crystalline Solids, 1998, 238, 37-44.	1.5	13
131	Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New Journal of Chemistry, 1998, 22, 703-712.	1.4	140
132	Structural Study by Wide-Angle X-ray Scattering of the Spin Transition Molecular Materials $[Fe(Htrz)2(trz)](BF4)$ and $[Fe(NH2trz)3](NO3)2(Htrz = 1,2,4-4H-Triazole, trz = 1,2,4-Triazolato)$. Chemistry of Materials, 1998, 10, 980-985.	3.2	67
133	Tetranuclear Tetrapyrido[3,2-a:2â€~,3â€~-c:3â€~â€~,2â€~â€~-h:2â€~â€~â€~â€~,3â€~â€~-j]phenazineruthenium Compl X-ray Scattering, and Photophysical Studies. Inorganic Chemistry, 1998, 37, 3603-3609.	ex:  S 1.9	ynthesis, W
134	Heterometallic Borole Complexes of Iron and Goldâ€. Organometallics, 1998, 17, 2177-2182.	1.1	18
135	Surface effects on the magnetic properties of ultrafine cobalt particles. Physical Review B, 1998, 57, 2925-2935.	1.1	516
136	Wide Angles X-Ray Scattering (W.A.X.S.) and H.R.E.M. Studies on Nanoscale Cobalt and Cobalt Colloids. Materials Science Forum, 1998, 269-272, 403-408.	0.3	2
137	Elaboration, Characterisation, and Magnetic Properties of Cobalt Fine Particles. Materials Science Forum, 1998, 269-272, 949-954.	0.3	2
138	Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. Journal of Non-Crystalline Solids, 1997, 212, 23-39.	1.5	17
139	A Wide Angle X-Ray Scattering (WAXS) Study of Nonstoichiometric Nickel Manganite Spinels NiMn2â-¡3l'/4O4+l'. Journal of Solid State Chemistry, 1997, 129, 271-276.	1.4	20
140	HREM and WAXS Study of the Structure of Metallic Nanoparticles. Journal De Physique III, 1997, 7, 505-515.	0.3	5
141	Laboratory Dispersive EXAFS Spectrometer. Acta Physica Polonica A, 1997, 91, 825-828.	0.2	1
142	A new solution route to silicates. Part 4.â€"Subtnicronic zircon powders. Journal of Materials Chemistry, 1996, 6, 1527-1532.	6.7	17
143	Synthesis and Isolation of Cuboctahedral and Icosahedral Platinum Nanoparticles. Ligand-Dependent Structures. Chemistry of Materials, 1996, 8, 1978-1986.	3.2	148
144	A laboratory EXAFS spectrometer in transmission dispersive mode. Review of Scientific Instruments, 1994, 65, 845-849.	0.6	13

#	Article	IF	Citations
145	Interpretation of Differential Anomalous X-Ray Scattering Data for Amorphous Cd-As. Acta Physica Polonica A, 1994, 86, 633-640.	0.2	1
146	Structural studies of amorphous Cd59As41 and Cd26As74 films by anomalous X-ray scattering. Journal of Non-Crystalline Solids, 1993, 164-166, 151-154.	1.5	3
147	Extended X-ray absorption fine-structure studies of short-range order in amorphous Zn–P films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 66, 727-736.	0.6	6
148	Structural studies of amorphous Zn-P films. Journal of Materials Science, 1992, 27, 3286-3292.	1.7	13
149	Microparacrystalline structure of amorphous Cd-As films. Zeitschrift Fur Kristallographie - Crystalline Materials, 1990, 193, 199-216.	0.4	10
150	Μicroparacrystalline structure of amorphous Cd-As films. Zeitschrift Fur Kristallographie - Crystalline Materials, 1990, 193, 199-216.	0.4	3
151	A LAXS (large angle x-ray scattering) and EXAFS (extended x-ray absorption fine structure) investigation of conductive amorphous nickel tetrathiolato polymers. Journal of the American Chemical Society, 1988, 110, 1833-1840.	6.6	52
152	Structural study of amorphous Cd-As films. Journal of Non-Crystalline Solids, 1987, 90, 633-636.	1.5	8
153	Crystal structure of As2V4O13. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42, 1465-1467.	0.4	2
154	EXAFS AND LAXS STRUCTURAL INVESTIGATIONS OF AMORPHOUS ONE-DIMENSIONAL COMPOUNDS (ML ₃) _{â^ž} (M=Mo, Ru; L=SPh, SePh, PYRAZOLATE). Journal De Physique Colloque, 1986, 47, C8-627-C8-631.	0.2	0
155	On amorphous Cd-As systems. Journal of Materials Science Letters, 1985, 4, 701-703.	0.5	6
156	LASIP: a liquid and amorphous structure investigation package. Journal of Applied Crystallography, 1985, 18, 214-218.	1.9	27
157	Absorption corrections and digital filtering of X-ray diffraction profiles recorded with a position-sensitive detector. Journal of Applied Crystallography, 1985, 18, 487-492.	1.9	9
158	LOCAL STRUCTURE OF THE CuCu (EDTA) (H ₂ O) ₂ , 2H ₂ O AMORPHOUS COMPLEX: A JOINT MAGNETIC, LAXS, AND MOLECULAR MECHANICS INVESTIGATION. Journal De Physique Colloque, 1985, 46, C8-661-C8-664.	0.2	0
159	Structural analysis of amorphous V ₂ O ₅ by large-angle X-ray scattering. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1982, 46, 137-149.	0.6	57