Mubashir Gulzar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6399235/publications.pdf

Version: 2024-02-01

		535685	536525
34	1,730 citations	17	29
papers	citations	h-index	g-index
36	36	36	1693
30	30	30	1073
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Formulation, tribological performance, and characterization of base oil with ZnO, graphene, and ZnO/graphene nanoparticles additives. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1515-1532.	0.5	6
2	Enhancing the Tribological Behavior of Lubricating Oil by Adding TiO ₂ , Graphene, and TiO ₂ /Graphene Nanoparticles. Tribology Transactions, 2019, 62, 452-463.	1.1	26
3	Wear characteristics of patterned and un-patterned tetrahedral amorphous carbon film in the presence of synthetic and bio based lubricants. Materials Research Express, 2019, 6, 036414.	0.8	2
4	Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribology International, 2018, 124, 209-229.	3.0	142
5	The effect of particle size on the dispersion and wear protection ability of MoS ₂ particles in polyalphaolefin and trimethylolpropane ester. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 987-998.	1.0	7
6	Magnesium diboride (MgB2): An effective and novel precursor for the synthesis of vertically aligned BNNTs. Materials Research Bulletin, 2018, 98, 235-239.	2.7	9
7	A review on the chemistry, production, and technological potential of bio-based lubricants. Renewable and Sustainable Energy Reviews, 2018, 82, 80-102.	8.2	229
8	Tribological compatibility analysis of conventional lubricant additives with palm trimethylolpropane ester (TMP) and tetrahedral amorphous diamond-like carbon coating (ta-C). Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 999-1013.	1.0	1
9	Tribological characteristics comparison of formulated palm trimethylolpropane ester and polyalphaolefin for cam/tappet interface of direct acting valve train system. Industrial Lubrication and Tribology, 2018, 70, 888-901.	0.6	9
10	Decomposition-adsorption-deposition: An effective and novel technique for synthesis of hexagonal boron nitride microsheets. Materials Science in Semiconductor Processing, 2018, 88, 161-166.	1.9	1
11	Dispersion Stability and Tribological Characteristics of TiO ₂ /SiO ₂ Nanocomposite-Enriched Biobased Lubricant. Tribology Transactions, 2017, 60, 670-680.	1.1	47
12	Chemically active oil filter to develop detergent free bio-based lubrication for diesel engine. Energy, 2017, 124, 413-422.	4.5	6
13	Synthesis of multilayered hexagonal boron nitride microcrystals as a potential hydrogen storage element. Ceramics International, 2017, 43, 7358-7361.	2.3	11
14	Controlled synthesis of anisotropic hexagonal boron nitride nano-web. Materials Science in Semiconductor Processing, 2017, 66, 44-49.	1.9	2
15	Investigation of the tribochemical interactions of a tungsten-doped diamond-like carbon coating (W-DLC) with formulated palm trimethylolpropane ester (TMP) and polyalphaolefin (PAO). RSC Advances, 2017, 7, 26513-26531.	1.7	15
16	A review on bio-based lubricants and their applications. Journal of Cleaner Production, 2017, 168, 997-1016.	4.6	239
17	A Review on Effects of Lubricant Formulations on Tribological Performance and Boundary Lubrication Mechanisms of Non-Doped DLC/DLC Contacts. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 267-294.	6.8	27
18	Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research, 2016, 31, 1932-1938.	1.2	96

#	Article	IF	CITATIONS
19	Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	274
20	Effects of biodiesel blends on lubricating oil degradation and piston assembly energy losses. Energy, 2016, 111, 713-721.	4.5	42
21	Influence of intrinsic and extrinsic conditions on the tribological characteristics of diamond-like carbon coatings: A review. Journal of Materials Research, 2016, 31, 1814-1836.	1.2	25
22	Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester. Tribology International, 2016, 93, 555-562.	3.0	94
23	Tribological Characteristics of <i>Calophyllum inophyllum</i> â€"Based TMP (Trimethylolpropane) Ester as Energy-Saving and Biodegradable Lubricant. Tribology Transactions, 2015, 58, 1002-1011.	1.1	49
24	Friction and wear characteristics of Calophyllum inophyllum biodiesel. Industrial Crops and Products, 2015, 76, 188-197.	2.5	71
25	Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribology International, 2015, 88, 271-279.	3.0	145
26	Effect of Lubricant Formulations on the Tribological Performance of Self-Mated Doped DLC Contacts: a review. Tribology Letters, 2015, 58, 1.	1.2	43
27	Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition. Applied Surface Science, 2015, 356, 1135-1149.	3.1	79
28	Oil filter modification for biodiesel–fueled engine: A pathway to lubricant sustainability and exhaust emissions reduction. Energy Conversion and Management, 2015, 91, 168-175.	4.4	20
29	Anatomization of Stresses on a V-12 Engine Crankshaft Vulnerable to Varying Imposed Forces. Applied Mechanics and Materials, 2013, 392, 141-145.	0.2	0
30	Geometric Modeling of the Frequency of an Acoustic Detonation Pressure Wave in a Standard Spark Ignition Engine. Applied Mechanics and Materials, 2013, 392, 146-150.	0.2	1
31	Modeling EHL of Rough Piston Skirts Using Different Viscosity-Grade Lubricants in Initial Engine Startup. , 2012, , .		0
32	Modeling Rough Piston Skirts EHL at Very Low Initial Engine Startup Speeds - Pressure Flow Factors Effects. , 2011 , , .		0
33	Linear Analysis of Crack Propagation in a Solid Rocket Propellant. Applied Mechanics and Materials, 0, 229-231, 742-746.	0.2	0
34	Antiwear Behavior of CuO Nanoparticles as Additive in Bio-Based Lubricant. Key Engineering Materials, 0, 748, 166-170.	0.4	8