Bibi Malmal Moshtaghioun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. Journal of the European Ceramic Society, 2013, 33, 1395-1401.	5.7	110
2	Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C). Journal of the European Ceramic Society, 2013, 33, 361-369.	5.7	106
3	Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. Journal of the European Ceramic Society, 2016, 36, 1829-1834.	5.7	102
4	Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating. Journal of the European Ceramic Society, 2012, 32, 1787-1794.	5.7	76
5	Additive-free superhard B4C with ultrafine-grained dense microstructures. Journal of the European Ceramic Society, 2014, 34, 841-848.	5.7	71
6	Densification of B4C nanopowder with nanograin retention by spark-plasma sintering. Journal of the European Ceramic Society, 2015, 35, 1991-1998.	5.7	48
7	High-temperature creep deformation of coarse-grained boron carbide ceramics. Journal of the European Ceramic Society, 2015, 35, 1423-1429.	5.7	36
8	Spark plasma sintering of fine-grained alumina ceramics reinforced with alumina whiskers. Ceramics International, 2017, 43, 658-663.	4.8	36
9	A study on the effects of silica particle size and milling time on synthesis of silicon carbide nanoparticles by carbothermic reduction. International Journal of Refractory Metals and Hard Materials, 2011, 29, 645-650.	3.8	33
10	Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties?. Journal of the European Ceramic Society, 2018, 38, 1190-1196.	5.7	28
11	Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications?. Journal of the European Ceramic Society, 2018, 38, 3994-4002.	5.7	25
12	Abrasive wear rate of boron carbide ceramics: Influence of microstructural and mechanical aspects on their tribological response. Journal of the European Ceramic Society, 2016, 36, 3925-3928.	5.7	24
13	Enhancing the spark-plasma sinterability of B4C nanopowders via room-temperature methylation induced purification. Journal of the European Ceramic Society, 2016, 36, 2843-2848.	5.7	23
14	High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C–SiC with/without graphite (g). Journal of the European Ceramic Society, 2016, 36, 1127-1134.	5.7	23
15	High-temperature deformation of fully-dense fine-grained boron carbide ceramics: Experimental facts and modeling. Materials and Design, 2015, 88, 287-293.	7.0	21
16	High-temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering. Ceramics International, 2017, 43, 7136-7141.	4.8	21
17	Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?. Journal of the European Ceramic Society, 2017, 37, 3791-3796.	5.7	16
18	Ceramics of Ta-doping stabilized orthorhombic ZrO2 densified by spark plasma sintering and the effect of post-annealing in air. Scripta Materialia, 2017, 130, 128-132.	5.2	14

#	Article	IF	CITATIONS
19	Is an alumina-whisker-reinforced alumina composite the most efficient choice for an oxidation-resistant high-temperature ceramic?. Journal of the European Ceramic Society, 2018, 38, 1812-1818.	5.7	13
20	Hot corrosion mechanism of tundish plaster with steel slags in continuous casting. Journal of Materials Science, 2007, 42, 6720-6728.	3.7	11
21	Grain-boundary diffusion coefficient in α-Al2O3 from spark plasma sintering tests: Evidence of collective motion of charge disconnections. Ceramics International, 2018, 44, 19044-19048.	4.8	10
22	A new approach to the grain-size dependent transition of stress exponents in yttria tetragonal zirconia polycrystals. The theoretical limit for superplasticity in ceramics. Ceramics International, 2016, 42, 4918-4923.	4.8	9
23	Sintering kinetics, defect chemistry and room-temperature mechanical properties of titanium nitride prepared by spark plasma sintering. Journal of Alloys and Compounds, 2019, 807, 151666.	5.5	9
24	Does grain size have an influence on intrinsic mechanical properties and conduction mechanism of near fully-dense boron carbide ceramics?. Journal of Alloys and Compounds, 2019, 795, 408-415.	5.5	9
25	Titanium carbonitride fabricated by spark plasma sintering: Is it a ceramic model of carbon-induced Friedel-Fleisher strengthening effect?. Journal of the European Ceramic Society, 2021, 41, 6275-6280.	5.7	9
26	Analyze complex phases of slag–tundish plaster reactions by modified XRD ratio of slopes method for some kinetic considerations. Journal of Materials Processing Technology, 2008, 196, 52-63.	6.3	7
27	Developing Two New Tundish Plasters and Comparing with the Magnesia Plaster Used in Continuous Casting of Steel. Journal of Materials Engineering and Performance, 2010, 19, 237-245.	2.5	7
28	Grain-boundary cation diffusion in ceria tetragonal zirconia determined by constant-strain-rate deformation tests. Journal of the European Ceramic Society, 2014, 34, 4469-4472.	5.7	7
29	A phase-field model of 2D grain size distribution in ceramics. Journal of the European Ceramic Society, 2014, 34, 2731-2736.	5.7	7
30	Mechanical instability of stressed grain boundaries during plastic deformation of zirconium carbide. Journal of the European Ceramic Society, 2016, 36, 2235-2240.	5.7	7
31	Non-Hall-Petch hardness dependence in ultrafine fibrous MgAl2O4-MgO eutectic ceramics fabricated by the laser-heated floating zone (LFZ) method. Journal of the European Ceramic Society, 2019, 39, 3208-3212.	5.7	7
32	Exotic grain growth law in twinned boron carbide under electric fields. Journal of the European Ceramic Society, 2018, 38, 4590-4596.	5.7	6
33	CaO–MgO–SiO2–P2O5- based multiphase bio-ceramics fabricated by directional solidification: Microstructure features and in vitro bioactivity studies. Ceramics International, 2021, 47, 17041-17048.	4.8	6
34	High-temperature compressive creep of novel fine-grained orthorhombic ZrO 2 ceramics stabilized with 12†mol% Ta doping. Journal of the European Ceramic Society, 2018, 38, 2445-2448.	5.7	5
35	Elusive super-hard B6C accessible through the laser-floating zone method. Scientific Reports, 2019, 9, 13340.	3.3	5
36	Medium infrared transparency of MgO-MgAl2O4 directionally solidified eutectics. Journal of the European Ceramic Society, 2020, 40, 1703-1708.	5.7	5

#	Article	IF	CITATIONS
37	The Effect of Crystallinity of Carbon Source on Mechanically Activated Carbothermic Synthesis of Nano-Sized SiC Powders. Journal of Materials Engineering and Performance, 2013, 22, 421-426.	2.5	3
38	Disclination dipoles are the Holy Grail for high temperature superplasticity in ceramics. Scripta Materialia, 2020, 185, 21-24.	5.2	3
39	Cation-driven electrical conductivity in Ta-doped orthorhombic zirconia ceramics. Ceramics International, 2021, 47, 7248-7252.	4.8	3
40	Mg2SiO4-MgAl2O4 directionally solidified eutectics: Hardness dependence modelled through an array of screw dislocations. Journal of the European Ceramic Society, 2020, 40, 4171-4176.	5.7	2
41	Can Y2O3-MgO eutectics be new promising structural and optical ceramics?. Acta Materialia, 2021, 216, 117139.	7.9	2
42	Recent Insights on the Superplastic Behaviour of Ceramics. Materials Science Forum, 2012, 735, 120-129.	0.3	1
43	High-Temperature Plasticity in Super Hard Boron Carbide Ceramics. Materials Science Forum, 2016, 838-839, 166-170.	0.3	1
44	The Role of a Threshold Stress on the Superplasticity of Ceramics Revisited. Materials Science Forum, 0, 838-839, 95-99.	0.3	0