
Mari K H Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6398938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of pyritic sludge with an anaerobic granule consortium for nitrate removal in low carbon systems. Water Research, 2022, 209, 117933.	5.3	4
2	Light-weight oxygen supply for portable biological nitrogen removal from urine and sweat. Chemical Engineering Journal Advances, 2022, 9, 100235.	2.4	2
3	Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Frontiers in Microbiology, 2022, 13, 825104.	1.5	9
4	Case Study: Impact of Diurnal Variations and Stormwater Dilution on SARS-CoV-2 RNA Signal Intensity at Neighborhood Scale Wastewater Pumping Stations. ACS ES&T Water, 2022, 2, 1964-1975.	2.3	4
5	Aerobic granular sludge: Impact of size distribution on nitrification capacity. Water Research, 2021, 188, 116445.	5.3	32
6	Effect of waste activated sludge pretreatment methods to mitigate Gordonia foaming potential in anaerobic digestion. Water and Environment Journal, 2021, 35, 381-389.	1.0	4
7	Application of aerobic kenaf granules for biological nutrient removal in a full-scale continuous flow activated sludge system. Chemosphere, 2021, 271, 129522.	4.2	7
8	An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. Water Research, 2021, 198, 117119.	5.3	28
9	Immobilization of active ammonia-oxidizing archaea in hydrogel beads. Npj Clean Water, 2021, 4, .	3.1	6
10	Partitioning of nutrient removal contribution between granules and flocs in a hybrid granular activated sludge system. Water Research, 2021, 203, 117514.	5.3	18
11	Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Research, 2021, 202, 117426.	5.3	45
12	Pairing denitrifying phosphorus accumulating organisms with anaerobic ammonium oxidizing bacteria for simultaneous N and P removal. Science of the Total Environment, 2021, 787, 147521.	3.9	9
13	Design of a 1000 L pilot-scale airlift bioreactor for nitrification with application of a three-phase hydrodynamic mathematical model and prediction of a low liquid circulation velocity. Chemical Engineering Research and Design, 2020, 153, 257-262.	2.7	2
14	Correlating sludge constituents with digester foaming risk using sludge foam potential and rheology. Water Science and Technology, 2020, 81, 949-960.	1.2	2
15	Responsible science, engineering and education for water resource recovery and circularity. Environmental Science: Water Research and Technology, 2020, 6, 1952-1966.	1.2	15
16	Elucidating the Competition between Heterotrophic Denitrification and DNRA Using the Resource-Ratio Theory. Environmental Science & Technology, 2020, 54, 13953-13962.	4.6	30
17	Flocs in disguise? High granule abundance found in continuous-flow activated sludge treatment plants. Water Research, 2020, 179, 115865.	5.3	41
18	Effective nitrogen removal from ammonium-depleted wastewater by partial nitritation and anammox immobilized in granular and thin layer gel carriers. Water Research, 2020, 183, 116078.	5.3	28

MARI K H WINKLER

#	Article	IF	CITATIONS
19	A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in <i>Methylobacter</i> . MSystems, 2020, 5, .	1.7	13
20	Reducing Cost and Environmental Impact of Wastewater Treatment with Denitrifying Methanotrophs, Anammox, and Mainstream Anaerobic Treatment. Environmental Science & Technology, 2019, 53, 12935-12944.	4.6	54
21	New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 2019, 57, 50-55.	3.3	173
22	Kinetic implication of moving warm side-stream Anaerobic ammonium oxidizing bacteria to cold mainstream wastewater. Bioresource Technology, 2019, 288, 121534.	4.8	8
23	Resource Concentration Modulates the Fate of Dissimilated Nitrogen in a Dual-Pathway Actinobacterium. Frontiers in Microbiology, 2019, 10, 3.	1.5	20
24	Data Fusion for Environmental Process Control: Maximizing Useful Information Recovery under Data Limited Constraints. , 2019, 3, 1-4.		5
25	Bioaugmentation of sidestream nitrifying-denitrifying phosphorus-accumulating granules in a low-SRT activated sludge system at low temperature. Water Research, 2018, 135, 241-250.	5.3	46
26	Integration of methane removal in aerobic anammox-based granular sludge reactors. Environmental Technology (United Kingdom), 2018, 39, 1615-1625.	1.2	13
27	Comparison of different aerobic granular sludge types for activated sludge nitrification bioaugmentation potential. Bioresource Technology, 2018, 251, 189-196.	4.8	37
28	Bioaugmentation with Nitrifying Granules in Low-SRT Flocculent Activated Sludge at Low Temperature. Water Environment Research, 2018, 90, 343-354.	1.3	7
29	Effect of organic matter on the performance and N ₂ O emission of a granular sludge anammox reactor. Environmental Science: Water Research and Technology, 2018, 4, 1035-1046.	1.2	25
30	Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. Journal of Hazardous Materials, 2018, 357, 244-252.	6.5	36
31	Aerobic Granular Sludge Bioaugmentation in Low-SRT Flocculent Activated Sludge: Bench-Scale Demonstration and Pilot Testing. Proceedings of the Water Environment Federation, 2018, 2018, 3787-3796.	0.0	0
32	Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresource Technology, 2017, 233, 363-372.	4.8	113
33	Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration. PLoS ONE, 2017, 12, e0172785.	1.1	31
34	Phosphorus Recovery Using Aerobic Granular Activated Sludge Process Without Anaerobic Digestion. Proceedings of the Water Environment Federation, 2017, 2017, 1574-1580.	0.0	0
35	Achieving nitrification-denitrification in a low-SRT activated sludge system through bioaugmentation of sidestream nitrifying granules. Proceedings of the Water Environment Federation, 2017, 2017, 1285-1307.	0.0	1
36	Comparison of microbial populations and foaming dynamics in conventional versus membrane enhanced biological phosphorous removal systems. Water and Environment Journal, 2016, 30, 102-112.	1.0	6

MARI K H WINKLER

#	Article	IF	CITATIONS
37	Influence of process dynamics on the microbial diversity in a nitrifying biofilm reactor: Correlation analysis and simulation study. Biotechnology and Bioengineering, 2016, 113, 1962-1974.	1.7	7
38	Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor. Water Research, 2015, 73, 323-331.	5.3	68
39	Sidestream Growth of Nitrifying and Nitrifying-Denitrifying Granular Sludge for Use in Mainstream Nitrification Bioaugmentation. Proceedings of the Water Environment Federation, 2015, 2015, 1670-1677.	0.0	1
40	The biodrying concept: An innovative technology creating energy from sewage sludge. Bioresource Technology, 2013, 147, 124-129.	4.8	99
41	A full-scale house fly (Diptera: Muscidae) larvae bioconversion system for value-added swine manure reduction. Waste Management and Research, 2013, 31, 223-231.	2.2	60
42	Evaluating the solid retention time of bacteria in flocculent and granular sludge. Water Research, 2012, 46, 4973-4980.	5.3	77
43	Temperature and salt effects on settling velocity in granular sludge technology. Water Research, 2012, 46, 5445-5451.	5.3	73
44	Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Water Research, 2012, 46, 136-144.	5.3	191
45	Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Biotechnology and Bioengineering, 2012, 109, 1919-1928.	1.7	74
46	Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology, 2012, 94, 1657-1666.	1.7	142
47	Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor. Bioresource Technology, 2012, 114, 217-223.	4.8	103
48	Segregation of Biomass in Cyclic Anaerobic/Aerobic Granular Sludge Allows the Enrichment of Anaerobic Ammonium Oxidizing Bacteria at Low Temperatures. Environmental Science & Technology, 2011, 45, 7330-7337.	4.6	159
49	Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures. Water Research, 2011, 45, 3291-3299.	5.3	148