Philip V'kovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6398838/publications.pdf

Version: 2024-02-01

23 4,292 18 23
papers citations h-index g-index

32 32 32 11138 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 2021, 19, 155-170.	28.6	2,062
2	Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature, 2020, 582, 561-565.	27.8	377
3	Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerging Infectious Diseases, 2020, 26, 1592-1595.	4.3	299
4	Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle. Journal of Virology, 2020, 94, .	3.4	294
5	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	4.7	184
6	LY6E impairs coronavirus fusion and confers immune control of viral disease. Nature Microbiology, 2020, 5, 1330-1339.	13.3	170
7	Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. ELife, 2019, 8, .	6.0	157
8	APOBEC3-mediated restriction of RNA virus replication. Scientific Reports, 2018, 8, 5960.	3.3	103
9	Hidden Behind Autophagy: The Unconventional Roles of <scp>ATG</scp> Proteins. Traffic, 2013, 14, 1029-1041.	2.7	101
10	Temperature-dependent surface stability of SARS-CoV-2. Journal of Infection, 2020, 81, 452-482.	3.3	89
11	Disparate temperature-dependent virus–host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLoS Biology, 2021, 19, e3001158.	5. 6	79
12	Rapid Quantification of SARS-CoV-2-Neutralizing Antibodies Using Propagation-Defective Vesicular Stomatitis Virus Pseudotypes. Vaccines, 2020, 8, 386.	4.4	75
13	Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nature Communications, 2021, 12, 7276.	12.8	37
14	No Evidence for Human Monocyte-Derived Macrophage Infection and Antibody-Mediated Enhancement of SARS-CoV-2 Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644574.	3.9	35
15	A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets. PLoS Biology, 2021, 19, e3001490.	5.6	33
16	Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro. Microorganisms, 2020, 8, 1872.	3.6	25
17	New insights on the role of paired membrane structures in coronavirus replication. Virus Research, 2015, 202, 33-40.	2.2	19
18	SARS-CoV-2 Inhibition by Sulfonated Compounds. Microorganisms, 2020, 8, 1894.	3.6	19

Philip V'kovski

#	Article	IF	CITATIONS
19	Antiviral activity of K22 against members of the order Nidovirales. Virus Research, 2018, 246, 28-34.	2.2	17
20	Susceptibility of Well-Differentiated Airway Epithelial Cell Cultures from Domestic and Wild Animals to Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 2021, 27, 1811-1820.	4.3	11
21	The Small-Compound Inhibitor K22 Displays Broad Antiviral Activity against Different Members of the Family Flaviviridae and Offers Potential as a Panviral Inhibitor. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	9
22	Proximity Labeling for the Identification of Coronavirus–Host Protein Interactions. Methods in Molecular Biology, 2020, 2203, 187-204.	0.9	4
23	Establishment of caprine airway epithelial cells grown in an air-liquid interface system to study caprine respiratory viruses and bacteria. Veterinary Microbiology, 2021, 257, 109067.	1.9	3