
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6398029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects on Al ₂ O ₃ and La ₂ O ₃ additions on electrochemical performances of laserâ€cladded WC10Co4Cr coatings. International Journal of Applied Ceramic Technology, 2022, 19, 436-450.	2.1	2
2	Effect of Laser-Clad NiCrAl-SiC Coatings on Friction-Wear Performance of AISI H13 Steel at High Temperature. Journal of Materials Engineering and Performance, 2022, 31, 3014-3029.	2.5	4
3	Effect of Y ₂ O ₃ mass fraction on electrochemical corrosion performances of laser cladded CrNi coatings in 3.5% NaCl solution. Anti-Corrosion Methods and Materials, 2022, 69, 171-176.	1.5	4
4	Salt spray corrosion behavior and electrochemical performance of Al and Ti reinforced Ni60 coating by laser cladding. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1045-1056.	1.5	2
5	Effect of La2O3 Addition on Microstructure and Tribological Performance of Laser Cladded Ni-WC Coating on S136 Steel. Transactions of the Indian Institute of Metals, 2022, 75, 1843-1852.	1.5	1
6	Immersion corrosion behavior and electrochemical performance of laser cladded Ni60–CeO ₂ coatings in 5% NaCl solution. Corrosion Reviews, 2022, 40, 263-273.	2.0	1
7	Effects of La2O3 mass fraction on microstructure and friction-wear performances of WC â^ 10Co4Cr â~ Al2O3 coatings by laser cladding. Journal of the Australian Ceramic Society, 663-674.	20 22, 58	,2
8	Tribological Performance and Wear Mechanism of Laser Cladded NiCrAl-WC Coatings at High-Temperature. Transactions of the Indian Institute of Metals, 2022, 75, 1917-1928.	1.5	6
9	Microstructure, dry sliding friction performances and wear mechanism of laser cladded WC–10Co4Cr coating with different Al2O3 mass fractions. Surface and Coatings Technology, 2021, 406, 126749.	4.8	18
10	Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co–based alloy coatings by laser cladding. Surface and Coatings Technology, 2021, 408, 126816.	4.8	35
11	Effects of TiO2 Mass Fraction on Friction Reduction and Wear Resistance of Laser-Cladded CrNi Alloy Coating. Journal of Materials Engineering and Performance, 2021, 30, 2280-2290.	2.5	10
12	Corrosive wear and electrochemical corrosion performances of arc sprayed Al coating in 3.5% NaCl solution. Anti-Corrosion Methods and Materials, 2021, 68, 95-104.	1.5	5
13	Effect of CeO2 addition on microstructure and tribological characteristics of laser cladded Cu10Al–MoS2 coating under oil lubrication. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 2441-2453.	1.1	0
14	Effects of Al ₂ O ₃ mass fraction on microstructure and friction–wear performance of laser cladded Fe90 alloy coating. Industrial Lubrication and Tribology, 2021, 73, 1286-1293.	1.3	3
15	Microstructure, tribological performances, and wear mechanisms of laser-cladded TiC-reinforced NiMo coatings under grease-lubrication condition. Materials Science-Poland, 2021, 39, 395-409.	1.0	3
16	Effects of Al and Ti additions on corrosive–wear and electrochemical behaviors of laser cladded FeSiB coatings. Optics and Laser Technology, 2020, 124, 105958.	4.6	14
17	Immersion corrosion and electrochemical performances of laser cladded FeSiB, FeSiBCr and FeSiBCrMo coatings in 3.5Âwt% NaCl solution. Surface and Coatings Technology, 2020, 383, 125229.	4.8	28
18	Effects of laser thermal sprayed AlNiCr coating on fatigue performances of S355 structural steel. International Journal of Fatigue, 2020, 131, 105359.	5.7	4

#	Article	IF	CITATIONS
19	Microstructure and friction-wear performances of laser-cladded nano-CeO ₂ –reinforced NiCoCrAlY coatings at high temperature. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 1695-1706.	2.4	4
20	Appraisal on corrosion performances of CrNi, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings on H13 hot work mold. Anti-Corrosion Methods and Materials, 2020, 67, 150-157.	1.5	3
21	Electrochemical corrosion performances of laser thermal sprayed amorphous Al–Ti–Ni coatings in marine environment. Anti-Corrosion Methods and Materials, 2020, 67, 140-149.	1.5	2
22	Microstructure, Tribological Performance, and Wear Mechanism of Cr- and Mo-Reinforced FeSiB Coatings by Laser Cladding. Journal of Materials Engineering and Performance, 2020, 29, 7428-7444.	2.5	9
23	Corrosive-wear and Electrochemical Performance of Laser Thermal Sprayed Co30Cr8W1.6C3Ni1.4Si Coating on Ti6Al4V Alloy. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 812-819.	1.0	3
24	Comparison on electrochemical corrosion performances of arc and laser thermal sprayed Al–Ti–Ni coatings in marine environment. Materials Chemistry and Physics, 2020, 251, 123200.	4.0	19
25	Surface Characteristics and High-Temperature Wear of Plasma Nitrided Layer on Steel H13. Metal Science and Heat Treatment, 2020, 61, 717-723.	0.6	4
26	Tribological behavior of laser thermal sprayed Cr ₃ C ₂ –NiCr + 10%Ni/MoS ₂ composite coating on H13 hot work mould steel. Materials Research Express, 2020, 7, 016599.	1.6	6
27	Effects of Reciprocating Speed on Corrosive Wear Behavior of Cold-Sprayed Al Coating on Offshore Platforms. Physics of Metals and Metallography, 2020, 121, 1288-1294.	1.0	2
28	Microstructure and corrosion behaviour of laser-cladding Al-Ni-TiC-CeO2 composite coatings on S355 offshore steel. Journal of Alloys and Compounds, 2019, 770, 771-783.	5.5	45
29	Friction-Wear Behaviors of Chemical Vapor Deposited Diamond Films at High Temperatures. Journal of Superhard Materials, 2019, 41, 98-105.	1.2	5
30	Effect of Extrusion Temperatures on Friction-wear Behavior of Chain-wheel Fabricated by 40Cr Steel under Oil-lubrication Condition. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 684-691.	1.0	3
31	Friction–Wear Performances of Cathodic Arc Ion Plated CrN Coating at Elevated Temperatures. Powder Metallurgy and Metal Ceramics, 2019, 58, 73-80.	0.8	2
32	Characterization and friction–wear behaviors of laser thermal sprayed CoCrAlYTaSi coatings at elevated temperatures. Materials Research Express, 2019, 6, 106515.	1.6	1
33	Characteristics and Tribological Behaviors of TiAlN/Cr-Ni Composite Coatings at Elevated Temperatures. Journal of Materials Engineering and Performance, 2019, 28, 7075-7085.	2.5	2
34	Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation. Applied Surface Science, 2019, 497, 143703.	6.1	44
35	Effects of loads on friction–wear properties of HVOF sprayed FeCrBSi coating at elevated temperatures. Materials Research Express, 2019, 6, 096592.	1.6	1
36	Effect of laser remelting on amorphous formation and electrochemical corrosion of laser thermal sprayed Al–Ti–Ni coating. Materials Research Express, 2019, 6, 086545.	1.6	4

#	Article	IF	CITATIONS
37	Microstructure and High-Temperature Friction–Wear Properties of Laser-Cladded Cr–Ni–Al2O3–TiO2 Composite Coating. Transactions of the Indian Institute of Metals, 2019, 72, 2457-2463.	1.5	2
38	Effect of Micro-Arc Oxidation on Friction–Wear Behavior of Cold-Sprayed Al Coating in 3.5Âwt.% NaCl Solution. Journal of Materials Engineering and Performance, 2019, 28, 2716-2725.	2.5	10
39	Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution. Journal of Alloys and Compounds, 2019, 795, 416-425.	5.5	40
40	Effects of laser power on friction–wear performances of laser thermal sprayed Cr3C2–NiCr composite coatings at elevated temperatures. Optics and Laser Technology, 2019, 117, 227-238.	4.6	17
41	Effects of laser power on immersion corrosion and electrochemical corrosion performances of laser thermal sprayed amorphous AlFeSi coatings. Applied Surface Science, 2019, 481, 161-173.	6.1	39
42	Effects of laser power on corrosion behaviors of laser thermal sprayed Al–Ti–Ni amorphous coatings in H ₂ SO ₄ and NaOH solutions. Materials Research Express, 2019, 6, 065203.	1.6	0
43	Effects of Al mass fraction on corrosive wear and electrochemical corrosion of laser cladded AlFeCoCr amorphous coating in 3.5 wt% NaCl solution. Materials Research Express, 2019, 6, 076552.	1.6	3
44	Salt spray corrosion and electrochemical corrosion characteristics of CAIP and LTPN fabricated AlCrN/NL composite coating. Materials Research Express, 2019, 6, 046413.	1.6	2
45	Effects of mass ratios on salt spray corrosion and electrochemical corrosion behaviors of laser cladded Cr–Ni coatings. Anti-Corrosion Methods and Materials, 2019, 66, 352-359.	1.5	2
46	Influence of Al2O3 mass fractions on microstructure, oxidation resistance and friction–wear behaviors of CoCrAlYTaSi coatings. Surface and Coatings Technology, 2019, 379, 125058.	4.8	8
47	Effects of laser power on friction–wear behaviors of NiCoCrAlY coatings at high temperature. Materials Research Express, 2019, 6, 1265a2.	1.6	0
48	Friction-Wear Characterization of Cathodic Arc Ion Plated CrC Coating under Different Lubrication Conditions. Journal of Superhard Materials, 2019, 41, 402-411.	1.2	1
49	Effects of laser remelting speeds on microstructure, immersion corrosion, and electrochemical corrosion of arc–sprayed amorphous Al–Ti–Ni coatings. Journal of Alloys and Compounds, 2019, 771, 584-594.	5.5	23
50	Microstructure, bonding strength, and friction–wear performance of AlCrN/nitrided layer composite coating on H13 hot work mould steel. International Journal of Applied Ceramic Technology, 2019, 16, 951-965.	2.1	3
51	Corrosion wear and electrochemical corrosion behaviors of laser cladded amorphous FeSiB coating in 3.5% NaCl solution. Materials Research Express, 2019, 6, 035203.	1.6	4
52	Surface and cross–section characteristics and friction–wear properties of high velocity oxy fuel sprayed WC–12Co coating. International Journal of Applied Ceramic Technology, 2018, 15, 1229-1239.	2.1	10
53	Atomic force microscopy analysis of cathodic arc ion-plated CrN and CrC coatings. Journal of Coatings Technology Research, 2018, 15, 781-787.	2.5	1
54	Effects of Laser Remelting on Salt Spray Corrosion Behaviors of Arc-Sprayed Al Coatings in 3.5% NaCl Sea Environment. Transactions of the Indian Institute of Metals, 2018, 71, 617-625.	1.5	2

#	Article	IF	CITATIONS
55	Effects of warm extrusion temperatures on corrosion performance of 40Cr steel. Corrosion Engineering Science and Technology, 2018, 53, 481-486.	1.4	0
56	Microstructures and immersion corrosion behavior of laser thermal sprayed amorphous Al-Ni coatings in 3.5 % NaCl solution. Journal of Alloys and Compounds, 2018, 735, 1-12.	5.5	46
57	Microstructure and Mechanical Property of Magnetron Sputtering Deposited DLC Film. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 579-584.	1.0	9
58	Effect of laser remelting on microstructure and immersion corrosion of cold–sprayed aluminum coating on S355 structural steel. Optics and Laser Technology, 2018, 106, 348-356.	4.6	16
59	Surface and cross-section characteristics and immersion corrosion behavior of laser thermal sprayed amorphous AlNiCoCrY2O3 coatings. Applied Surface Science, 2018, 457, 69-82.	6.1	19
60	Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings. Materials, 2018, 11, 198.	2.9	33
61	Friction–Wear Characteristics of High Velocity Oxygen Fuel Sprayed NiCrBSi Alloy Coating at Elevated Temperatures. Transactions of the Indian Institute of Metals, 2018, 71, 2565-2573.	1.5	10
62	Effect of Laser Remelting Power on Immersion Corrosion of Amorphous Al–Ti–Ni Coatings. Coatings, 2018, 8, 46.	2.6	4
63	Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings. Materials, 2018, 11, 137.	2.9	12
64	Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution. Materials, 2018, 11, 283.	2.9	13
65	Microstructure, bonding strength and tribological characterization of Dacromet fabricated Zn–Al coating. Materials Research Express, 2018, 5, 106402.	1.6	0
66	Microstructures and immersion corrosion performances of arc sprayed amorphous Al-Ti-Ni coating on S355 structural steel. Anti-Corrosion Methods and Materials, 2018, 65, 271-280.	1.5	6
67	Effects of loads on friction–wear properties of HVOF sprayed NiCrBSi alloy coatings by laser remelting. Journal of Alloys and Compounds, 2017, 705, 700-707.	5.5	46
68	Effect of Load on Friction-Wear Behavior of HVOF-Sprayed WC-12Co Coatings. Journal of Materials Engineering and Performance, 2017, 26, 3465-3473.	2.5	5
69	Microstructures and friction–wear performances of cathodic arc ion plated TiAlN coatings on YT14 cemented carbide cutting tools. Journal of Materials Research, 2017, 32, 1693-1700.	2.6	4
70	Surface–Interface Microstructures and Friction-Wear Performances of Thermal Sprayed FeCrBSi Coatings Obtained by High-Velocity Oxygen Fuel Process. Powder Metallurgy and Metal Ceramics, 2017, 56, 70-77.	0.8	2
71	Effects of wear speeds on friction-wear behaviours of cathode arc ion plated TiAlSiN coatings at high temperatures. Tribology - Materials, Surfaces and Interfaces, 2017, 11, 66-74.	1.4	5
72	Wear behaviors of HVOF sprayed WC-12Co coatings by laser remelting under lubricated condition. Optics and Laser Technology, 2017, 89, 86-91.	4.6	29

#	Article	IF	CITATIONS
73	Surfaceâ€interface microstructures and binding strength of cathodic arc ion plated TiCN coatings on YT14 cutting tools. Surface and Interface Analysis, 2017, 49, 488-494.	1.8	4
74	Microstructures and High-Temperature Friction–Wear Performance of Laser-Remelted WC-12Co Coatings by HVOF. Tribology Transactions, 2017, 60, 781-788.	2.0	6
75	Friction and wear performances of cathodic arc ion plated TiAlSiN coating under oil lubricated condition. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1301-1305.	1.0	1
76	Microstructures and high-temperature wear performances of cathodic arc ion plating on YT14 cutting tool. International Journal of Advanced Manufacturing Technology, 2016, 85, 2597-2605.	3.0	3
77	Surface-interface micro-structures and mechanical properties of chemical vapor deposited diamond films. Journal of Materials Research, 2016, 31, 2906-2915.	2.6	0
78	Effects of strain rate on stress corrosion of S355 steel in 3.5% NaCl solutions. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1381-1386.	1.0	6
79	Friction and Wear Performances of 7475 Aluminium Alloy after Anodic Oxidation. Rare Metal Materials and Engineering, 2016, 45, 1122-1127.	0.8	18
80	AFM analysis of TiN, TiAlN, and TiAlSiN coatings prepared by cathodic arc ion plating. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1093-1098.	1.0	5
81	XPS and EDS Analysis of VC Coatings Prepared by TD Process. Rare Metal Materials and Engineering, 2016, 45, 297-302.	0.8	8
82	Effects of Loadings on Friction and Wear Behaviors of Cathodic Arc Ion Plating AlTiN Coating at High Temperature. Tribology Transactions, 2016, 59, 604-612.	2.0	7
83	Interfacial bonding mechanism and bonding strength of AlTiCrN coating by cathodic arc ion plating. Surface and Interface Analysis, 2015, 47, 198-205.	1.8	6
84	Effects of anodic oxidation on corrosion properties of Al coating by arc spraying in seawater. Surface and Interface Analysis, 2015, 47, 911-918.	1.8	3
85	Friction and wear behaviors of AlTiCrN coatings by cathodic arc ion plating at high temperatures. Journal of Materials Research, 2015, 30, 503-511.	2.6	7
86	SEM-EDS Plane Scan and Line Scan Analysis of TiCN Coatings by Cathodic Arc Ion Plating. Rare Metal Materials and Engineering, 2015, 44, 3000-3004.	0.8	6
87	Salt spray corrosion and electrochemical corrosion properties of anodic oxide film on 7475 aluminum alloy. Journal of Alloys and Compounds, 2015, 632, 286-290.	5.5	51
88	Analysis of structure and bonding strength of AlTiN coatings by cathodic ion plating. Applied Physics A: Materials Science and Processing, 2015, 119, 309-316.	2.3	13
89	Nanoindentation analysis of TiN, TiAlN, and TiAlSiN coatings prepared by cathode ion plating. Science China Technological Sciences, 2015, 58, 1360-1368.	4.0	30
90	Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 2015, 88, 31-39.	5.9	31

#	Article	IF	CITATIONS
91	Effects of micro arc oxidation on fatigue limits and fracture morphologies of 7475 high strength aluminum alloy. Journal of Alloys and Compounds, 2015, 650, 393-398.	5.5	48
92	Friction and Wear Performances of Ni-P Coatings by Chemical Plating after Crystallization Treatment. Rare Metal Materials and Engineering, 2015, 44, 1314-1319.	0.8	6
93	Microstructures and plane energy spectra of X80 pipeline steel welded joints by submerged arc automatic welding. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1265-1269.	1.0	7
94	Effects of Laser Quenching on Impact Toughness and Fracture Morphologies of 40CrNiMo High Strength Steel. Journal of Materials Engineering and Performance, 2014, 23, 3695-3702.	2.5	14
95	Salt Spray Corrosion Resistance of Aluminized Coatings on X70 Pipeline Steel by Laser Thermal Radiation. Rare Metal Materials and Engineering, 2014, 43, 2083-2088.	0.8	3
96	The surface morphologies and spectroscopy analysis of VC coatings on the substrate of Cr12MoV prepared by TD process after salt spray. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 628-633.	1.0	3
97	Microstructure and Friction–Wear Performance of Laser Cladded Cu10Al–Ti–MoS2 Coatings Under Oil Lubrication Condition. Transactions of the Indian Institute of Metals, 0, , 1.	1.5	1
98	High-temperature tribological behaviours of H13 hot work mould steel by low-temperature plasma nitriding process. Canadian Metallurgical Quarterly, 0, , 1-13.	1.2	0
99	Microstructure and Tribological Performances of Laser Cladded Ni–Mo–Cr3C2 Coatings Under Grease-Lubrication Condition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , .	2.2	0