List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639801/publications.pdf Version: 2024-02-01



ZHENVIL CHIL

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Screen-printing of core-shell Mn3O4@C nanocubes based sensing microchip performing ultrasensitive recognition of allura red. Food and Chemical Toxicology, 2022, 162, 112908.                                                                      | 1.8 | 12        |
| 2  | Beyond separation: Membranes towards medicine. , 2022, 2, 100020.                                                                                                                                                                                  |     | 4         |
| 3  | In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion. Biosensors and Bioelectronics, 2022, 206, 114147.                                                                   | 5.3 | 8         |
| 4  | Membranes for the life sciences and their future roles in medicine. Chinese Journal of Chemical Engineering, 2022, 49, 1-20.                                                                                                                       | 1.7 | 5         |
| 5  | Dehydration of <scp>C<sub>2</sub></scp> – <scp>C<sub>4</sub></scp> alcohol/water mixtures via electrostatically enhanced graphene oxide laminar membranes. AICHE Journal, 2021, 67, aic17170.                                                      | 1.8 | 26        |
| 6  | Screenâ€printing of nanocubeâ€based flexible microchips for the precise biosensing of ethanol during fermentation. AICHE Journal, 2021, 67, e17142.                                                                                                | 1.8 | 10        |
| 7  | 3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing. Chinese Journal of Chemical Engineering, 2021, 37, 105-113.                                                        | 1.7 | 10        |
| 8  | Au/In <sub>2</sub> O <sub>3</sub> Nanocubes Based Labelâ€free Aptasensor for Ultrasensitive and Rapid<br>Recognition of Cardiac Troponinâ€I. Electroanalysis, 2021, 33, 1810-1818.                                                                 | 1.5 | 10        |
| 9  | Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineered multi-enzyme biosensing microchip. Microchemical Journal, 2021, 164, 106075.                                                         | 2.3 | 10        |
| 10 | Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials.<br>Journal of Electroanalytical Chemistry, 2021, 893, 115328.                                                                                   | 1.9 | 21        |
| 11 | In-situ growth of Cu@CuFe Prussian blue based core-shell nanowires for non-enzymatic electrochemical determination of ascorbic acid with high sensitivity and reusability. Journal of Electroanalytical Chemistry, 2021, 900, 115718.              | 1.9 | 8         |
| 12 | A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosensors and Bioelectronics, 2021, 193, 113554.                                                        | 5.3 | 20        |
| 13 | In Situ Construction of Oriented Ptâ€PANI Needleâ€Like Nanoarraysâ€Based Labelâ€Free Aptasensor for<br>Ultrafast and Ultrasensitive Recognition of Cardiac Troponin I. Advanced Materials Interfaces, 2021, 8,                                     | 1.9 | 3         |
| 14 | In Situ Construction of Oriented Ptâ€₽ANI Needle‣ike Nanoarraysâ€Based Labelâ€Free Aptasensor for<br>Ultrafast and Ultrasensitive Recognition of Cardiac Troponin I (Adv. Mater. Interfaces 24/2021).<br>Advanced Materials Interfaces, 2021, 8, . | 1.9 | 1         |
| 15 | Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sensors and Actuators B: Chemical, 2020, 306, 127587.                                                                   | 4.0 | 29        |
| 16 | In Situ-Forming Magnetic Fe <sub>3</sub> O <sub>4</sub> Nanoroses on Defect-Controllable<br>Mesoporous Graphene Oxide for Enzyme-Mimic Sensing. Industrial & Engineering Chemistry<br>Research, 2020, 59, 17934-17943.                             | 1.8 | 7         |
| 17 | In situ fabrication of aloe-like Au–ZnO micro/nanoarrays for ultrasensitive biosensing of catechol.<br>Biosensors and Bioelectronics, 2020, 156, 112145.                                                                                           | 5.3 | 33        |
| 18 | Artificial Electron Mediator with Nanocubic Architecture Highly Promotes Microbial<br>Electrosynthesis from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 6777-6785.                                                         | 3.2 | 20        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Separationâ€Sensing Membrane Performing Precise Realâ€Time Serum Analysis During Blood Drawing.<br>Angewandte Chemie - International Edition, 2020, 59, 18701-18708.                                                  | 7.2 | 23        |
| 20 | A Separation‧ensing Membrane Performing Precise Realâ€Time Serum Analysis During Blood Drawing.<br>Angewandte Chemie, 2020, 132, 18860-18867.                                                                           | 1.6 | 0         |
| 21 | In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sensors and Actuators B: Chemical, 2019, 296, 126617.                                                                            | 4.0 | 33        |
| 22 | Electrochemical mercury biosensors based on advanced nanomaterials. Journal of Materials<br>Chemistry B, 2019, 7, 3620-3632.                                                                                            | 2.9 | 35        |
| 23 | Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosensors and Bioelectronics, 2019, 124-125, 260-267.                                                           | 5.3 | 67        |
| 24 | High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes. Biosensors and Bioelectronics, 2018, 104, 1-7.                                   | 5.3 | 45        |
| 25 | One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochimica Acta, 2018, 270, 147-155.                                                                | 2.6 | 56        |
| 26 | An ultrasensitive biosensing flexible chip using a novel silver@Prussian blue core-shell nanocube composite. Sensors and Actuators B: Chemical, 2018, 276, 31-41.                                                       | 4.0 | 34        |
| 27 | A regular nanostructured dithiolene metal complex film for ultrasensitive biosensing of liver enzyme. Sensors and Actuators B: Chemical, 2017, 241, 860-867.                                                            | 4.0 | 18        |
| 28 | Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. Biosensors and Bioelectronics, 2017, 96, 17-25.                                     | 5.3 | 82        |
| 29 | In-situ secondary growth of nanocube-based Prussian-blue film as an ultrasensitive biosensor.<br>Progress in Natural Science: Materials International, 2017, 27, 297-302.                                               | 1.8 | 4         |
| 30 | A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical<br>single-walled carbon nanotubes and a target recycling strategy. Journal of Materials Chemistry B,<br>2017, 5, 1073-1080. | 2.9 | 41        |
| 31 | Advanced nanomaterial inks for screen-printed chemical sensors. Sensors and Actuators B: Chemical, 2017, 243, 919-926.                                                                                                  | 4.0 | 92        |
| 32 | A highly sensitive electrochemical IFN-γ aptasensor based on a hierarchical graphene/AuNPs electrode<br>interface with a dual enzyme-assisted amplification strategy. RSC Advances, 2017, 7, 45053-45060.               | 1.7 | 18        |
| 33 | Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosensors and Bioelectronics, 2017, 92, 709-717.                     | 5.3 | 65        |
| 34 | A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in<br>highly efficient electrochemical mercury assay. Biosensors and Bioelectronics, 2017, 89, 871-879.              | 5.3 | 56        |
| 35 | A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously. Chemical Communications, 2016, 52, 12706-12709.                                          | 2.2 | 8         |
| 36 | Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high<br>electrocatalysis. Electrochimica Acta, 2016, 217, 210-217.                                                                | 2.6 | 20        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Unprecedented Perovskite Oxyfluoride Membranes with Highâ€Efficiency Oxygen Ion Transport Paths<br>for Lowâ€Temperature Oxygen Permeation. Advanced Materials, 2016, 28, 3511-3515.                                                | 11.1 | 121       |
| 38 | Compact film fabrication of porous coordination polymer<br>Co <sub>3</sub> [Co(CN) <sub>6</sub> ] <sub>2</sub> and its reversible vapochromic behavior. Dalton<br>Transactions, 2016, 45, 10249-10255.                             | 1.6  | 17        |
| 39 | Conducting Membranes: Unprecedented Perovskite Oxyfluoride Membranes with Highâ€Efficiency<br>Oxygen Ion Transport Paths for Lowâ€Temperature Oxygen Permeation (Adv. Mater. 18/2016). Advanced<br>Materials, 2016, 28, 3510-3510. | 11.1 | 1         |
| 40 | Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. ACS Nano, 2016, 10, 3398-3409.                                                                                                                     | 7.3  | 330       |
| 41 | Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes. Sensors and Actuators B: Chemical, 2016, 228, 679-687.                                                                    | 4.0  | 69        |
| 42 | Self-Organized Nano- and Microstructure of Electrochemical Materials by Design of Fabrication Approaches. , 2016, , 1033-1056.                                                                                                     |      | 0         |
| 43 | Highâ€Efficiency Waterâ€Transport Channels using the Synergistic Effect of a Hydrophilic Polymer and<br>Graphene Oxide Laminates. Advanced Functional Materials, 2015, 25, 5809-5815.                                              | 7.8  | 177       |
| 44 | Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light. Chinese Journal of Chemical Engineering, 2015, 23, 1326-1334.                                                        | 1.7  | 62        |
| 45 | Prussian blue nanocubes decorated three-dimensional silver nanowires network for<br>high-performance electrochemical biosensing. Sensors and Actuators B: Chemical, 2015, 221, 1009-1016.                                          | 4.0  | 21        |
| 46 | In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochimica Acta, 2015, 176, 162-171.                                            | 2.6  | 33        |
| 47 | Integrated, highly crystalline and water stable coordination framework films on various substrates and water-assisted protonic conductivity. Chemical Communications, 2015, 51, 7947-7949.                                         | 2.2  | 16        |
| 48 | Facile fabrication of a three-dimensional gold nanowire array for high-performance electrochemical sensing. Journal of Materials Chemistry B, 2015, 3, 3134-3140.                                                                  | 2.9  | 25        |
| 49 | CO <sub>2</sub> -tolerant oxygen-permeable perovskite-type membranes with high permeability. Journal of Materials Chemistry A, 2015, 3, 22564-22573.                                                                               | 5.2  | 81        |
| 50 | 3D porous α-Ni(OH) <sub>2</sub> nanostructure interconnected with carbon black as a<br>high-performance gas sensing material for NO <sub>2</sub> at room temperature. RSC Advances, 2015,<br>5, 101760-101767.                     | 1.7  | 17        |
| 51 | Self-Organized Nano- and Micro-structure of Electrochemical Materials by Design of Fabrication Approaches. , 2015, , 1-20.                                                                                                         |      | 0         |
| 52 | An ultrasensitive electrochemical sensing platform for Hg2+ based on a density controllable metal-organic hybrid microarray. Biosensors and Bioelectronics, 2014, 54, 165-170.                                                     | 5.3  | 41        |
| 53 | A guest-dependent thermochromic feature in a metal–organic framework and its thin film on<br>different supports. Journal of Materials Chemistry A, 2014, 2, 13698-13704.                                                           | 5.2  | 27        |
| 54 | Three-dimensional porous microarray of gold modified electrode for ultrasensitive and simultaneous assay of various cancer biomarkers. Journal of Materials Chemistry B, 2014, 2, 2658.                                            | 2.9  | 13        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance. Sensors and Actuators B: Chemical, 2014, 202, 820-826.                                                 | 4.0 | 18        |
| 56 | In Situ Fabrication of Threeâ€Ðimensional Graphene Films on Gold Substrates with Controllable Pore<br>Structures for Highâ€Performance Electrochemical Sensing. Advanced Functional Materials, 2014, 24,<br>7032-7041.                   | 7.8 | 54        |
| 57 | 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors.<br>Biosensors and Bioelectronics, 2014, 61, 422-428.                                                                                           | 5.3 | 7         |
| 58 | A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale, 2013, 5, 10219.                                                               | 2.8 | 34        |
| 59 | Comparative study of structures, thermal stabilities and dielectric properties for a ferroelectric MOF<br>[Sr(μ-BDC)(DMF)]â^ž with its solvent-free framework. Dalton Transactions, 2013, 42, 6603.                                      | 1.6 | 25        |
| 60 | Amperometric glucose biosensor based on direct assembly of Prussian blue film with ionic<br>liquid-chitosan matrix assisted enzyme immobilization. Sensors and Actuators B: Chemical, 2013, 176,<br>978-984.                             | 4.0 | 54        |
| 61 | Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosensors and Bioelectronics, 2013, 49, 184-191.                                                                             | 5.3 | 39        |
| 62 | In-situ growth of micro-cubic Prussian blue–TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach. Biosensors and Bioelectronics, 2013, 47, 329-334.                                                   | 5.3 | 28        |
| 63 | Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors. Journal of<br>Materials Chemistry, 2012, 22, 14874.                                                                                             | 6.7 | 19        |
| 64 | Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress.<br>Journal of Materials Chemistry, 2012, 22, 21917.                                                                                    | 6.7 | 14        |
| 65 | Hierarchical self-assembly of double structured Prussian blue film for highly sensitive biosensors.<br>Journal of Materials Chemistry, 2011, 21, 11968.                                                                                  | 6.7 | 11        |
| 66 | Design and Preparation of Nanostructured Prussian Blue Modified Electrode for Glucose Detection. , 2011, , .                                                                                                                             |     | 1         |
| 67 | Effect of temperature-controlled poly(diallyldimethylammonium chloride) on morphology of<br>self-assembled Prussian Blue electrode and its high detection sensitivity of hydrogen peroxide.<br>Electrochimica Acta, 2011, 56, 8163-8167. | 2.6 | 11        |
| 68 | Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity. Journal of Materials Chemistry, 2010, 20, 7815.                                             | 6.7 | 49        |
| 69 | A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochemistry Communications, 2009, 11, 484-487.                                                                          | 2.3 | 88        |
| 70 | Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian Blue modified electrode. Electrochimica Acta, 2009, 54, 7490-7494.                                                                                 | 2.6 | 33        |
| 71 | Facile fabrication of a Prussian Blue film by direct aerosol deposition on a Pt electrode. Chemical Communications, 2009, , 3566.                                                                                                        | 2.2 | 18        |