Nancy Kedersha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of stress granule assembly and disassembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118876.	1.9	177
2	Bisphenol A promotes stress granule assembly and modulates the integrated stress response. Biology Open, 2021, 10, .	0.6	13
3	Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Molecular Cell, 2020, 80, 876-891.e6.	4.5	154
4	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	13.5	543
5	Stress Granules and Processing Bodies in Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032813.	2.3	325
6	Phosphorylation of G3BP1-S149 does not influence stress granule assembly. Journal of Cell Biology, 2019, 218, 2425-2432.	2.3	39
7	Genetic Perturbation of TIA1 Reveals a Physiological Role in Fear Memory. Cell Reports, 2019, 26, 2970-2983.e4.	2.9	19
8	Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 2017, 130, 927-937.	1.2	203
9	Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules. Journal of Visualized Experiments, 2017, , .	0.2	21
10	Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions. Journal of Virology, 2016, 90, 7268-7284.	1.5	63
11	G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 2016, 212, 845-60.	2.3	480
12	Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget, 2016, 7, 30307-30322.	0.8	52
13	Stress granules, P-bodies and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 861-870.	0.9	333
14	Stress Granules Regulate Double-Stranded RNA-Dependent Protein Kinase Activation through a Complex Containing G3BP1 and Caprin1. MBio, 2015, 6, e02486.	1.8	118
15	Viral and Cellular Proteins Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation. PLoS Pathogens, 2015, 11, e1004659.	2.1	133
16	Methods for the characterization of stress granules in virus infected cells. Methods, 2015, 90, 57-64.	1.9	45
17	Stress granules and cell signaling: more than just a passing phase?. Trends in Biochemical Sciences, 2013, 38, 494-506.	3.7	514
18	Stress granules: the Tao of RNA triage. Trends in Biochemical Sciences, 2008, 33, 141-150.	3.7	948

NANCY KEDERSHA

#	Article	IF	CITATIONS
19	Chapter 26 Realâ€Time and Quantitative Imaging of Mammalian Stress Granules and Processing Bodies. Methods in Enzymology, 2008, 448, 521-552.	0.4	103
20	Mammalian Stress Granules and Processing Bodies. Methods in Enzymology, 2007, 431, 61-81.	0.4	573
21	Eukaryotic Initiation Factor 2α-independent Pathway of Stress Granule Induction by the Natural Product Pateamine A. Journal of Biological Chemistry, 2006, 281, 32870-32878.	1.6	229
22	Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. Journal of Cell Biology, 2005, 169, 871-884.	2.3	1,237
23	Stress Granule Assembly Is Mediated by Prion-like Aggregation of TIA-1. Molecular Biology of the Cell, 2004, 15, 5383-5398.	0.9	859
24	Evidence That Ternary Complex (eIF2-GTP-tRNAiMet)–Deficient Preinitiation Complexes Are Core Constituents of Mammalian Stress Granules. Molecular Biology of the Cell, 2002, 13, 195-210.	0.9	519
25	Dynamic Shuttling of Tia-1 Accompanies the Recruitment of mRNA to Mammalian Stress Granules. Journal of Cell Biology, 2000, 151, 1257-1268.	2.3	678