Joydip Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397707/publications.pdf

Version: 2024-02-01

516710 454955 34 972 16 30 citations h-index g-index papers 34 34 34 471 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dating the Oldest Greenstone in India: A 3.51-Ga Precise U-Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton. Journal of Geology, 2008, 116, 449-461.	1.4	190
2	Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India. Geology, 2014, 42, 923-926.	4.4	102
3	Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine, 2011, 148, 340-347.	1.5	81
4	A 3.51 Ga bimodal volcanicsâ€BIFâ€ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geological Journal, 2012, 47, 284-311.	1.3	78
5	The Neoproterozoic Cratonic Successions of Peninsular India. Gondwana Research, 1999, 2, 213-225.	6.0	70
6	Neoarchean tectonothermal imprints in the Rengali Province, eastern India and their implication on the growth of Singhbhum Craton: evidence from zircon U–Pb SHRIMP data. Journal of Metamorphic Geology, 2016, 34, 743-764.	3.4	43
7	Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: Depositional controls, nature and source of >3.0Ga detrital uraninites. Ore Geology Reviews, 2016, 72, 1290-1306.	2.7	43
8	Depositional setting of the Kolhan Group: its implications for the development of a Meso to Neoproterozoic deep-water basin on the South Indian craton. South African Journal of Geology, 2006, 109, 183-192.	1.2	41
9	Reappraisal of the structure of the Western Iron Ore Group, Singhbhum craton, eastern India: Implications for the exploration of BIF-hosted iron ore deposits. Gondwana Research, 2007, 12, 525-532.	6.0	40
10	Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India. Journal of Structural Geology, 2016, 83, 156-179.	2.3	39
11	Provenance of >2.8 Ga Keonjhar Quartzite, Singhbhum Craton, Eastern India: Implications for the Nature of Mesoarchean Upper Crust and Geodynamics. Journal of Geology, 2016, 124, 331-351.	1.4	28
12	Tectonic juxtaposition of crust and continental growth during orogenesis: Example from the Rengali Province, eastern India. Geoscience Frontiers, 2015, 6, 537-555.	8.4	26
13	Superposed deformation fabrics in the Precambrian metabasic rocks of the Iron Ore Group, Singhbhum craton, Eastern India: Evidences from anisotropy of magnetic susceptibility studies. Journal of Structural Geology, 2010, 32, 249-261.	2.3	22
14	Chapter 9 Palaeoarchaean–Mesoproterozoic sedimentation and tectonics along the west-northwestern margin of the Singhbhum Granite body, eastern India: a synthesis. Geological Society Memoir, 2015, 43, 121-138.	1.7	20
15	Archean banded iron formations of India. Earth-Science Reviews, 2020, 201, 102927.	9.1	19
16	Shallow to deep-water deposition in a Cratonic basin: an example from the Proterozoic Penganga Group, Pranhita–Godavari Valley, India. Journal of Asian Earth Sciences, 2003, 21, 613-622.	2.3	17
17	Detrital zircon <scp>U–Pb LA″CPMS</scp> ages from the Kolhan Group, Singhbhum Craton, eastern India: Implications for terminal Mesoproterozoic palaeogeography between Columbia and Rodinia along the Central Indian Tectonic Zone. Geological Journal, 2021, 56, 60-78.	1.3	14
18	Deep-water manganese deposits in the mid- to late Proterozoic Penganga Group of the Pranhita-Godavari Valley, South India. Geological Society Special Publication, 1997, 119, 105-115.	1.3	11

#	Article	IF	Citations
19	Recognition, Characterization and Implications of High-Grade Silicic Ignimbrite Facies from the Paleoproterozoic Bijli Rhyolites, Dongargarh Supergroup, Central India. Gondwana Research, 2001, 4, 519-527.	6.0	10
20	Palaeomagnetism of Mesoproterozoic limestone and shale successions of some Purana basins in southern India. Geological Magazine, 2015, 152, 728-750.	1.5	10
21	The Geochemistry of Banded Iron Formation-Hosted High-Grade Hematite-Martite Iron Ores. , 2008, , .		10
22	Transition from alluvial to wave-tide-dominated Meso-Neoarchean shelf sedimentation in the Mankarchua Quartzite, Singhbhum craton, eastern India. Precambrian Research, 2021, 354, 106020.	2.7	9
23	Clay Mineral and Geochemical Proxies for Intense Climate Change in the Permian Gondwana Rock Record from Eastern India. Research, 2019, 2019, 8974075.	5 . 7	9
24	Organotemplate silica deposition in Neoproterozoic deep-marine environments: evidence from the Penganga Group, Adilabad, India. Terra Nova, 2004, 16, 338-343.	2.1	8
25	Geology and Genesis of the Major Banded Iron Formation-Hosted High-Grade Iron Ore Deposits of India. , 2008, , .		8
26	Organotemplate structures in sedimentary manganese carbonates of the Neoproterozoic Penganga Group, Adilabad, India. Journal of Earth System Science, 2005, 114, 247-257.	1.3	6
27	Detrital zircon LA-ICPMS U-Pb and Lu-Hf signature from the Mesoarchean Keonjhar Quartzite: Implications for the nature of Archean continental crust and geodynamics. Geosystems and Geoenvironment, 2022, 1, 100057.	3. 2	6
28	Coalescing microstructure and fabric transitions with AMS data in deformed limestone: Implications on deformation kinematics. Journal of Structural Geology, 2018, 114, 294-309.	2.3	3
29	Internal Stratigraphy of the Mesoarchean Keonjhar Siliciclastics, Singhbhum Craton, Eastern India: Paleogeographic Implications. Journal of the Geological Society of India, 2021, 97, 125-132.	1.1	3
30	Early atmosphere and hydrosphere oxygenation: Clues from Precambrian paleosols and chemical sedimentary records of India. Episodes, 2020, 43, 175-186.	1.2	3
31	Grain-scale deformation in the Palaeoproterozoic Dongargarh Supergroup, central India: implications for shallow crustal deformation mechanisms from microstructural analysis. Geological Magazine, 2006, 143, 531-543.	1.5	2
32	Bioturbation by crab populations vis-Ã-vis sediment dispersal in Sagar Island, Hugli Estuary, India. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
33	Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India: REPLY. Geology, 2015, 43, e367-e367.	4.4	0
34	Oxygenation of Early Atmosphere and Potential Stratigraphic Records from India. Springer Geology, 2020, , 179-194.	0.3	0